• Title/Summary/Keyword: Automatic Weather System

Search Result 277, Processing Time 0.03 seconds

Development of KHU Automatic Observing Software for McDonald 30inch telescope (KAOS30)

  • Ji, Tae-Geun;Byeon, Seoyeon;Lee, Hye-In;Jung, Hyunsoo;Lee, Sang-Yun;Hwang, Sungyong;Choi, Changsu;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2017
  • Automatic observing is the most efficient system for sky surveys that image many targets over large areas of the sky. Such a system requires the integrating control software that systematically manages astronomical instruments that are not connected to each other. In February of 2017, we installed a wide-field 10 inch telescope for Supernovae survey on the McDonald 30 inch telescope as a piggyback system. However, during the observations, information such as target coordinates could not be exchanged with the telescope mount. The reason is the program that controls the telescope control system (TCS) and the program that controls the imager operate on independent PCs. KAOS30 is an integrated observing software developed to improve this environment. The software is composed of four packages that are the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). The TCP communicates to the TCS and also communicates weather information. SMP supports automatic observing in a script mode, which improves the efficiency of the survey. KAOS30 was developed based on Visual C ++ and runs on the Windows operating system. It also supports the ASCOM driver platform for various manufacturers. The instruments that support ASCOM can be installed without modification of the program code. KAOS30 can be applied as software for many different telescopes in future projects.

  • PDF

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

Evaluation of Thermal Environments during the Heat Waves of Summer 2013 in Busan Metropolitan Area (2013년 부산지역 폭염사례일의 열쾌적성 평가)

  • Kim, Young-Jun;Kim, Hyunsu;Kim, Yoo-Keun;Kim, Jin-Kuk;Kim, Yeon-Mai
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1929-1941
    • /
    • 2014
  • Now a days, frequency of abnormally high temperatures like heat wave by global warming and climate change is increasing constantly and the number of patient with heat related illness are jumping rapidly. In this study, we chose the case day for the heat wave in Busan area(Busan and Yangsan), 2013 which it was the most hottest year during 21th century. And then, we analysed the weather condition using automatic synoptic observing system(ASOS) data. Also, four indices, heat index(HI), wet bulb globe temperature(WBGT), Man-ENvironment heat EXchange model(MENEX)'s results like Physiological subjective temperature(PST), Physiological strain(PhS), were calculated to evaluate the thermal comfort and stress quantitatively. However, thermal comfort was different as the each station and thermal comfort index during same time. Busan's thermal indices (HI: hot, WBGT: sweltering, PST: very hot, PhS: very hot) indicated relatively higher than Yansan's (HI: very hot, WBGT: sweltering, PST: very hot, PhS: sweltering). It shows that Busan near coast is relatively more comfortable than Yangsan located in inland.

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

A Study of Modular Architecture's Design to Dwelling Environment in Antarctica (극한지 모듈러 건축물의 설계, 시공 및 거주환경에 대한 연구)

  • Lee, Won-Hak;Song, Young-Hak;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • This study looked at designing, building and operating temporary camp, the first structures that South Korea built in the Antarctica. While there may be differences in accordance with the topography, ground surfaces in the Antarctica are covered broken stones, glaciers and snow. Hence, such topographical characteristics should be taken into account when conducting any construction work. To ensure successful assembly construction in the Antarctica using modules, prior trial assembly work should be done in Korea to identify any possible trouble in the actual construction process. Assuming that the workers will have to spend at least one winter in the temporary camp, the work will be more severely affected by adverse weather conditions and snow drift, resulting in the need to clear snow. This can be by designing roofs with curved surfaces. Also, quantitative effects will need to be verified through simulation and actual measurement. It will also be necessary to assess the camp's thermal environment and examine its air-conditioning methods. To identify the temporary camp's thermal system, the temperatures and humidities were measured, and the heating system was designed not to offer automatic control or desired value selection functions.

Development of Auto-Empting Type Weighing Precipitation Gauge and Performance Test on Rainfall Measurement (자동배수형 무게식 강수량계 개발 및 강우량 측정 성능검사)

  • Kim, Sang-Jo;Son, Top
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.279-285
    • /
    • 2012
  • The weighing precipitation gauge with auto-empting capability was developed in the R&D project organized by the Research Agency for Climate Science (RACS) and supported by the Korea Meteorological Administration (KMA). This project was initiated in line with the KMA's plan executed since 2010 to introduce the weighing precipitation gauges partly into of their Automatic Weather Station (AWS) network in order to upgrade the quality of precipitation data. The innovative feature of this research is that the auto-empting in weighing precipitation gauge is realized by abrupt rotation of receiving container. The prototype was tested in compliance with the relevant standards of KMA. The results of performance test on rainfall measurement in laboratory verified that the accuracies for 20 mm and 100 mm reference rainfall amount were 0.1 mm and 0.4 mm, respectively in both conditions of auto-empting and no-empting. During the rotation of container for auto-empting, the data was extrapolated smoothly by applying the same precipitation intensity of the previous 10 sec. Consequently, it was found that the auto-empting precipitation gauge developed in this research is quite enough to be used for the operational purpose of accurate measurement with 0.1 mm resolution, regardless of the precipitation intensity.

Concept Design of Arc-SAR System Mounted on a Vehicle (차량 탑재형 Arc-SAR 시스템 개념 설계)

  • Cho, Seong-Jun;Lee, Hoon-Yol;Kim, Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.3-6
    • /
    • 2008
  • 본 논문에서는 레일형 GB-SAR의 단점을 극복하고자 차량에 원형레일을 탑재하여 신속한 기동을 확보하고 합성구경의 길이를 늘리며 영상영역을 확장한 Arc-SAR의 설계안을 제시한다. 하드웨어 측면에서 살펴보면, 밴형 차량의 상부에 원형레일을 설치하고 마이크로파 송, 수신 안테나를 탑재한 후 레일 위를 1mm 이내의 정밀도로 이동시키며, 자료를 획득하게 된다. 이때 안테나에 연결된 동축 케이블은 차량 내부의 송, 수신장치에 연결되는데 RF대역에서 완벽히 작동하는 슬립링이 없기 때문에 내부 송, 수신 장치를 턴 테이블위에 장착하여 외부 안테나의 이동과 동일한 각도로 회전하여, 동축 케이블의 꼬임을 방지하게 된다. 송, 수신 장치의 구성은 벡터 네트워크 분석기를 기반으로 마이크로파 앰프, 마이크로파 스위치로 구성되며, 통합 제어 소프트웨어를 통해 외부 안테나의 이동과 함께 제어된다. 한편, Arc-SAR 영상의 구현은 원형레일을 따라 얻어지는 합성구경의 기하학적인 특수성을 감안하여 최초로 시도될 것이다. 이 시스템은 RTK-GPS를 장착하여 지반변형 모니터링 시 차량 이동 오차를 최소화 하고자 하며, 이외에 고정형 산란체를 이용하여 차량 이동 오차를 보정하고자 한다. 또한 AWS (Automatic Weather System)을 장착하여 위상의 대기보정을 동시에 수행할 것이다. 이 시스템은 차량 탑재에 의한 기동성의 확보로 침수나 침하 등 긴급 재난 지역에 즉각적인 대응이 가능하며, 대형 구조물의 주기적인 변형 모니터링 등에 활용성이 클 것이다.

  • PDF

Characteristics of Wind Energy for Long-term Period (10 years) at Seoguang Site on Jeju Island (제주 서광지역에 대한 풍력에너지의 장기간 (10년) 특성)

  • Ko, Kyung-Nam;Kim, Kyoung-Bo;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.45-52
    • /
    • 2008
  • In order to clarify characteristics of variation in wind energy over a long-term period, an investigation was carried out at Seoguang site on Jeju island. The wind data for 10 years from Automatic Weather System (AWS) were analyzed for each year. The variation in the annual energy production (AEP) for the 2 MW wind turbine was estimated through statistical work. The result shows that the range of the yearly average wind speed at 15 m above ground level for 10 years was from -22.6% to +13.7%, which is wider range than that in Japan. The coefficient of variation for the AEP was 22.7%, which is about twice of that for the yearly average wind speed. Therefore, for estimating the wind energy potential accurately at a given site, the wind data should be analyzed over a long-term period based on the data from the meteorological station.

Nocturnal Inversion Layer observed by Tethersonde and AWS System and its Relation to Air Pollution at Ulsan (Tethersonde와 기상탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계)

  • Lim Yun-Kyu;Kim Yoo-Keun;Oh In-Bo;Song Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.555-563
    • /
    • 2005
  • This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003, The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0,76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone $(O_3)$ concentration was lower, while nitrogen dioxide $(NO_2)$ concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide $(SO_2)$ concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.

WRF-Hydro 모델을 활용한 국내 산악지역 돌발홍수 예측 적용성 평가

  • Ryu, Young;Ji, Hee-sook;Iim, Yoon-jin;Kim, Baek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.24-24
    • /
    • 2017
  • 홍수와 가뭄 등 수문기상재해 분석 및 사전 예측하기 위해서는 강수뿐만 아니라 토양수분, 증발산, 유량, 등과 같이 지표?하의 수문기상정보를 고려하는 것이 필요하다. 본 연구에서는 National Center for Atmospheric Research (NCAR)에서 개발된 고해상도 수문기상정보 모의가 가능한 WRF-Hydro를 활용하여 남강댐 유역에서 발생되는 돌발홍수 예측 적용성 평가를 수행하였다. 모델의 시공간 해상도는 1 hr, 150 m 이며, 기상 관측자료(Automatic Weather System, Automated Synoptic Observing System)를 사용하여 매개변수 민감도 실험을 실시하여 최적 모델 설정을 제시하였다. 고려된 매개변수는 격자 침투량을 결정하는 변수, 초기 저류 깊이, 표면 저항계수, 조도계수와 초기 토양수분 정보이며, 검증에 사용된 정보는 국가수자원관리종합정보시스템에서 1시간 단위로 제공되는 유입량 정보를 사용하였다. 그 결과 유출량은 격자 침투량을 결정하는 변수와 조도계수에 따라 민감하게 반응하였으며, 초기 토양수분량의 변화에 따라 시간에 따른 유출량의 변화가 강수에 민감하게 반응하는 것을 확인 할 수 있었다. 보정된 매개변수를 적용하여 돌발홍수 신고 지점의 유출량 변화를 살펴본 결과 강수의 발생과 동시에 매우 빠르게 유출량이 발생한 것을 볼 수 있었다.

  • PDF