• Title/Summary/Keyword: Automatic Weather Station (AWS)

Search Result 103, Processing Time 0.029 seconds

A Time Series Analysis on Urban Weather Conditions for Constructing Urban Integrated Energy System (차세대에너지시스템 구축을 위한 도시기상조건 시계열분석)

  • Kim, Sang-Ok;Han, Kyung-Min;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.26-31
    • /
    • 2009
  • This study was analysed influence of urban higher temperature in Busan about time series analysis of AWS data. The results are as follows. (1) The temperature of Busan show min $13.2^{\circ}C$ ~max $15.8^{\circ}C$ by 50 years, it is on the rise. (2) The seasonal adjustment series, summer appeared min $17.5^{\circ}C$ ~max $28.9^{\circ}C$ with primitive series similarly. The winter was min $-11.4^{\circ}C$ ~max $17.9^{\circ}C$, the minimum temperature was more lowly than primitive series and maximum temperature was more higher than primitive series. The results, seasonal adjustment series is guessed with influence difference urban structural element beside seasonal factor. (3) Regional analytical result, January appeared with range of min 28% ~max 196% of the seasonal factor and August appeared min 90% ~ max 106%. One of the case which is of 100% or more of the seasonal factor January 12nd~17th, August appears at the 15~17th.

  • PDF

Characteristics of Meteorological Parameters and Ionic Components in PM2.5 during Asian Dust Events on November 28 and 30, 2018 at Busan (부산지역 2018년 11월 28일과 11월 30일 황사 발생 시의 기상과 PM2.5 중의 이온성분 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.515-524
    • /
    • 2022
  • This study investigated characteristics of meteorological parameters and ionic components of PM2.5 during Asian dust events on November 28 and 30, 2018 at Busan, Korea. The seasonal occurrence frequencies of Asian dust during 1960~2019 (60 years) were 81.7% in spring, 12.2% in winter, and 6.1% in autumn. Recently, autumn Asian dust occurrence in Busan has shown an increasing trend. The result of AWS (automatic weather station), surface weather chart, and backward trajectory analyses showed that the first Asian dust of Nov. 28, 2018, in Busan came with rapid speed through inner China and Bohai Bay from Mongolia. The second Asian dust of Nov. 30, 2018, in Busan seems to have resulted from advection and deposition of proximal residual materials. These results indicated that understanding the characteristics of meteorological parameters and ionic components of PM2.5 during Asian dust events could provide insights into establishing a control strategy for urban air quality.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

Runoff Simulation of An Urban Drainage System Using Radar Rainfall Data (레이더 강우 자료를 이용한 도시유역의 유출 모의)

  • Kang, Na Rae;Noh, Hui Seung;Lee, Jong So;Lim, Sang Hun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.413-422
    • /
    • 2013
  • In recent, the rainfall is showing different properties in space and time but the ground rain gauge only can observe rainfall at a point. This means the ground rain gauge has the limitations in spatial and temporal resolutions to measure rainfall and so there is a need to utilize radar rainfall which can consider spatial distribution of rainfall This study tried to apply radar rainfall for runoff simulation on an urban drainage system. The study area is Guro-gu, Seoul and we divided study area into subbasins based on rain gauge network of AWS(Automatic Weather station). Then the radar rainfalls were adjusted using rainfall data of rain gauge stations the areal rainfalls were obtained. The runoffs were simulated by using XP-SWMM model in subbasins of an urban drainage system. As the results, the adjusted radar rainfalls were underestimated in the range of 60 to 95% of rain gauge rainfalls and so the simulated runoffs from the adjusted radar and gauge rainfalls also showed the differences. The runoff peak time from radar rainfall was occurred more fast than that from gauge rainfall.

A Study of the Urban Heat Island in Seoul using Local Analysis System (지역규모 분석 모델을 이용한 서울 도시열섬 특성 연구)

  • Chun, Ji Min;Lee, Seon-Yong;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • A very high resolution weather analysis system (VHRAS) of 50 m horizontal resolution is established based on LAPS. VHRAS utilizes the 3 hourly forecast data of the Unified Model (UM) of the Korea Meteorological Administration (KMA) with the horizontal resolution of 12 km as initial guess fields. The analysis system ingests the automatic weather station (AWS) data as input observations. The analysis system operates every hour for Seoul, Korea region in real time basis. It takes less than 10 minutes for one analysis cycle. The size of grid of the analysis domain is $800{\times}660$, respectively. The analysis results from December 2010 to February 2011 showed that the mean biases of temperature, maximum and minimum temperature were -0.07, 1.6, $0.2^{\circ}C$, respectively. The temperature in the central part of the city revealed relatively higher value than that of the surrounding mountainous areas, which showed a heat island feature. The heat island appears in zonal direction since the central city region is developed along a large river. Along the heat island, the eastern region was warmer than the western region. The warmer temperature in the western part of the heat island was caused by anthropogenic heat change in conjunction with the change of land use. This system will provide more reliable weather data and information in Seoul.

Spatio-Temporal Patterns of Extreme Precipitation Events by Typhoons Across the Republic of Korea (태풍 내습 시 남한의 극한강수현상의 시.공간적 패턴)

  • Lee, Seung-Wook;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.3
    • /
    • pp.384-400
    • /
    • 2013
  • In this study, spatio-temporal patterns of extreme precipitation events caused by typhoons are examined based on observational daily precipitation data at approximately 340 weather stations of Korea Meterological Administration's ASOS (Automated Synoptic Observation System) and AWS (Automatic Weather System) networks for the recent 10 year period (2002~2011). Generally, extreme precipitation events by typhoons exceeding 80mm of daily precipitation commonly appear in Jeju Island, Gyeongsangnam-do, and the eastern coastal regions of the Korean Peninsula. However, the frequency, intensity and spatial extent of typhoon-driven extreme precipitation events can be modified depending on the topography of major mountain ridges as well as the pathway of and proximity to typhoons accompanying the anti-clockwise circulation of low-level moisture with hundreds of kilometers of radius. Yellow Sea-passing type of typhoons in July cause more frequent extreme precipitation events in the northern region of Gyeonggi-do, while East Sea-passing type or southern-region-landfall type of typhoons in August-early September do in the interior regions of Gyeongsangnam-do. These results suggest that when local governments develop optimal mitigation strategies against potential damages by typhoons, the pathway of and proximity to typhoons are key factors.

  • PDF

Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies (풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증)

  • Her, Sooyoung;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.735-742
    • /
    • 2015
  • In this paper, we compare and verify the prediction accuracy and feasibility for wind resources on a wind farm using the Weather Research and Forecasting (WRF) model, which is a numerical weather-prediction model. This model is not only able to simulate local weather phenomena, but also does not require automatic weather station (AWS), satellite, or meteorological mast data. To verify the feasibility of WRF to predict the wind resources required from a wind farm pre-feasibility study, we compare and verify measured wind data and the results predicted by WAsP. To do this, we use the Pyeongdae and Udo sites, which are located on the northeastern part of Jeju island. Together with the measured data, we use the results of annual and monthly mean wind speed, the Weibull distribution, the annual energy production (AEP), and a wind rose. The WRF results are shown to have a higher accuracy than the WAsP results. We therefore confirmed that WRF wind resources can be used in wind farm pre-feasibility studies.

Adjustment factors of Precipitation using One-minute Data in Seoul (서울지방 1분 자료를 이용한 강수자료의 환산계수 산정)

  • Jo, Han-Seong;Um, Myoung-Jin;Cho, Won-Cheol;Cho, Joo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1506-1510
    • /
    • 2006
  • 현재 기상청에서 제공하는 강수자료는 정시자료로서 수문학적 의미의 임의지속시간 강수자료라 볼 수 없다. 따라서 이러한 정시자료를 임의지속시간 강수자료로 변환하여 사용하여야 한다. 이러한 환산계수는 국외에서는 Weiss(1964), Dwyer와 Reed(1995) 등에 의하여 제시되어졌고, 국내에서는 김규호 등(1988)등이 환산계수를 제시한 바 있다. 그렇지만 기존 연구의 자료들은 목측에 의한 자료로서 많은 불확실성을 가지고 있다. 최근 관측기기의 발달에 의하여 기상청에서는 1분 단위의 관측 자료를 구축하였다. 따라서 본 연구에서는 이러한 1분 단위 강수자료를 이용하여 수문학적 의미의 임의지속시간 강수자료를 적출하여 보다 정확하게 강수자료의 환산계수(Adjustment factor)를 구축하는데 목적이 있다. 본 연구에서는 서울지방 7개 자동기상관측소(AWS:Automatic Weather Station)에서 관측된 6개년(2000년${\sim}$2005년) 1분 강수자료를 이용하여 고정시간 연 최대강수량과 임의시간 연 최대강수량간의 관계를 연구하였다. 1분 강수자료를 이용하여 고정시간과 임의지속시간에 대한 연 최대치 강수 계열을 구축.도시한 후 선형회귀분석에 의해 선정된 계수를 환산계수로 제시하였다. 고정시간 1시간부터 24시간까지의 최대강수량과 임의시간 간격 최대강수량의 비율을 분석한 결과 환산계수는 지속시간이 증가함에 따라 비선형적으로 감소하는 것으로 나타났다. 이러한 관계를 이용하면 정시 강수자료를 보다 정확하게 임의지속시간 강수자료로 환산할 수 있을 것으로 판단된다.

  • PDF

Wind Prediction with a Short-range Multi-Model Ensemble System (단시간 다중모델 앙상블 바람 예측)

  • Yoon, Ji Won;Lee, Yong Hee;Lee, Hee Choon;Ha, Jong-Chul;Lee, Hee Sang;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.