• 제목/요약/키워드: Automatic Speech Detection

검색결과 58건 처리시간 0.028초

음절 bigram를 이용한 띄어쓰기 오류의 자동 교정 (Automatic Correction of Word-spacing Errors using by Syllable Bigram)

  • 강승식
    • 음성과학
    • /
    • 제8권2호
    • /
    • pp.83-90
    • /
    • 2001
  • We proposed a probabilistic approach of using syllable bigrams to the word-spacing problem. Syllable bigrams are extracted and the frequencies are calculated for the large corpus of 12 million words. Based on the syllable bigrams, we performed three experiments: (1) automatic word-spacing, (2) detection and correction of word-spacing errors for spelling checker, and (3) automatic insertion of a space at the end of line in the character recognition system. Experimental results show that the accuracy ratios are 97.7 percent, 82.1 percent, and 90.5%, respectively.

  • PDF

Automatic Detection of Korean Accentual Phrase Boundaries

  • Lee, Ki-Yeong;Song, Min-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권1E호
    • /
    • pp.27-31
    • /
    • 1999
  • Recent linguistic researches have brought into focus the relations between prosodic structures and syntactic, semantic or phonological structures. Most of them prove that prosodic information is available for understanding syntactic, semantic and discourse structures. But this result has not been integrated yet into recent Korean speech recognition or understanding systems. This study, as a part of integrating prosodic information into the speech recognition system, proposes an automatic detection technique of Korean accentual phrase boundaries by using one-stage DP, and the normalized pitch pattern. For making the normalized pitch pattern, this study proposes a method of modified normalization for Korean spoken language. For the experiment, this study employs 192 sentential speech data of 12 men's voice spoken in standard Korean, in which 720 accentual phrases are included, and 74.4% of the accentual phrase boundaries are correctly detected while 14.7% are the false detection rate.

  • PDF

한국인의 외국어 발화오류검출 음성인식기에서 청취판단과 상관관계가 높은 기계 스코어링 기법 (Machine Scoring Methods Highly-correlated with Human Ratings in Speech Recognizer Detecting Mispronunciation of Foreign Language)

  • 배민영;권철홍
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.217-226
    • /
    • 2004
  • An automatic pronunciation correction system provides users with correction guidelines for each pronunciation error. For this purpose, we develop a speech recognition system which automatically classifies pronunciation errors when Koreans speak a foreign language. In this paper, we propose a machine scoring method for automatic assessment of pronunciation quality by the speech recognizer. Scores obtained from an expert human listener are used as the reference to evaluate the different machine scores and to provide targets when training some of algorithms. We use a log-likelihood score and a normalized log-likelihood score as machine scoring methods. Experimental results show that the normalized log-likelihood score had higher correlation with human scores than that obtained using the log-likelihood score.

  • PDF

말지각의 기초표상: 음소 또는 변별자질 (The Primitive Representation in Speech Perception: Phoneme or Distinctive Features)

  • 배문정
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.157-169
    • /
    • 2013
  • Using a target detection task, this study compared the processing automaticity of phonemes and features in spoken syllable stimuli to determine the primitive representation in speech perception, phoneme or distinctive feature. For this, we modified the visual search task(Treisman et al., 1992) developed to investigate the processing of visual features(ex. color, shape or their conjunction) for auditory stimuli. In our task, the distinctive features(ex. aspiration or coronal) corresponded to visual primitive features(ex. color and shape), and the phonemes(ex. /$t^h$/) to visual conjunctive features(ex. colored shapes). The automaticity is measured by the set size effect that was the increasing amount of reaction time when the number of distracters increased. Three experiments were conducted. The laryngeal features(experiment 1), the manner features(experiment 2), and the place features(experiment 3) were compared with phonemes. The results showed that the distinctive features are consistently processed faster and automatically than the phonemes. Additionally there were differences in the processing automaticity among the classes of distinctive features. The laryngeal features are the most automatic, the manner features are moderately automatic and the place features are the least automatic. These results are consistent with the previous studies(Bae et al., 2002; Bae, 2010) that showed the perceptual hierarchy of distinctive features.

A Robust Method for Speech Replay Attack Detection

  • Lin, Lang;Wang, Rangding;Yan, Diqun;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.168-182
    • /
    • 2020
  • Spoofing attacks, especially replay attacks, pose great security challenges to automatic speaker verification (ASV) systems. Current works on replay attacks detection primarily focused on either developing new features or improving classifier performance, ignoring the effects of feature variability, e.g., the channel variability. In this paper, we first establish a mathematical model for replay speech and introduce a method for eliminating the negative interference of the channel. Then a novel feature is proposed to detect the replay attacks. To further boost the detection performance, four post-processing methods using normalization techniques are investigated. We evaluate our proposed method on the ASVspoof 2017 dataset. The experimental results show that our approach outperforms the competing methods in terms of detection accuracy. More interestingly, we find that the proposed normalization strategy could also improve the performance of the existing algorithms.

조음자질을 이용한 한국인 학습자의 영어 발화 자동 발음 평가 (Automatic pronunciation assessment of English produced by Korean learners using articulatory features)

  • 류혁수;정민화
    • 말소리와 음성과학
    • /
    • 제8권4호
    • /
    • pp.103-113
    • /
    • 2016
  • This paper aims to propose articulatory features as novel predictors for automatic pronunciation assessment of English produced by Korean learners. Based on the distinctive feature theory, where phonemes are represented as a set of articulatory/phonetic properties, we propose articulatory Goodness-Of-Pronunciation(aGOP) features in terms of the corresponding articulatory attributes, such as nasal, sonorant, anterior, etc. An English speech corpus spoken by Korean learners is used in the assessment modeling. In our system, learners' speech is forced aligned and recognized by using the acoustic and pronunciation models derived from the WSJ corpus (native North American speech) and the CMU pronouncing dictionary, respectively. In order to compute aGOP features, articulatory models are trained for the corresponding articulatory attributes. In addition to the proposed features, various features which are divided into four categories such as RATE, SEGMENT, SILENCE, and GOP are applied as a baseline. In order to enhance the assessment modeling performance and investigate the weights of the salient features, relevant features are extracted by using Best Subset Selection(BSS). The results show that the proposed model using aGOP features outperform the baseline. In addition, analysis of relevant features extracted by BSS reveals that the selected aGOP features represent the salient variations of Korean learners of English. The results are expected to be effective for automatic pronunciation error detection, as well.

Voice Activity Detection with Run-Ratio Parameter Derived from Runs Test Statistic

  • Oh, Kwang-Cheol
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.95-105
    • /
    • 2003
  • This paper describes a new parameter for voice activity detection which serves as a front-end part for automatic speech recognition systems. The new parameter called run-ratio is derived from the runs test statistic which is used in the statistical test for randomness of a given sequence. The run-ratio parameter has the property that the values of the parameter for the random sequence are about 1. To apply the run-ratio parameter into the voice activity detection method, it is assumed that the samples of an inputted audio signal should be converted to binary sequences of positive and negative values. Then, the silence region in the audio signal can be regarded as random sequences so that their values of the run-ratio would be about 1. The run-ratio for the voiced region has far lower values than 1 and for fricative sounds higher values than 1. Therefore, the parameter can discriminate speech signals from the background sounds by using the newly derived run-ratio parameter. The proposed voice activity detector outperformed the conventional energy-based detector in the sense of error mean and variance, small deviation from true speech boundaries, and low chance of missing real utterances

  • PDF

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System

  • 장한;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.37-39
    • /
    • 2009
  • In the research of speech recognition, locating the beginning and end of a speech utterance in a background of noise is of great importance. Since the background noise presenting to record will introduce disturbance while we just want to get the stationary parameters to represent the corresponding speech section, in particular, a major source of error in automatic recognition system of isolated words is the inaccurate detection of beginning and ending boundaries of test and reference templates, thus we must find potent method to remove the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two simple time-domain measurements - short-time energy, and short-time zero-crossing rate, which couldn't guarantee the precise results if in the low signal-to-noise ratio environments. This paper proposes a novel approach that finds the Lyapunov exponent of time-domain waveform. This proposed method has no use for obtaining the frequency-domain parameters for endpoint detection process, e.g. Mel-Scale Features, which have been introduced in other paper. Comparing with the conventional methods based on short-time energy and short-time zero-crossing rate, the novel approach based on time-domain Lyapunov Exponents(LEs) is low complexity and suitable for Digital Isolated Word Recognition System.

  • PDF

외국어 발화오류 검출 음성인식기를 위한 스코어링 기법 (Machine scoring method for speech recognizer detection mispronunciation of foreign language)

  • 강효원;배민영;이재강;권철홍
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2004년도 춘계 학술대회 발표논문집
    • /
    • pp.239-242
    • /
    • 2004
  • An automatic pronunciation correction system provides users with correction guidelines for each pronunciation error. For this purpose, we propose a speech recognition system which automatically classifies pronunciation errors when Koreans speak a foreign language. In this paper, we also propose machine scoring methods for automatic assessment of pronunciation quality by the speech recognizer. Scores obtained from an expert human listener are used as the reference to evaluate the different machine scores and to provide targets when training some of algorithms. We use a log-likelihood score and a normalized log-likelihood score as machine scoring methods. Experimental results show that the normalized log-likelihood score had higher correlation with human scores than that obtained using the log-likelihood score.

  • PDF

한국어 공통 음성 DB구축 및 오류 검증 (Common Speech Database Collection and Validation for Communications)

  • 이수종;김상훈;이영직
    • 대한음성학회지:말소리
    • /
    • 제46호
    • /
    • pp.145-157
    • /
    • 2003
  • In this paper, we'd like to briefly introduce Korean common speech database, which project has been started to construct a large scaled speech database since 2002. The project aims at supporting the R&D environment of the speech technology for industries. It encourages domestic speech industries and activates speech technology domestic market. In the first year, the resulting common speech database consists of 25 kinds of databases considering various recording conditions such as telephone, PC, VoIP etc. The speech database will be widely used for speech recognition, speech synthesis, and speaker identification. On the other hand, although the database was originally corrected by manual, still it retains unknown errors and human errors. So, in order to minimize the errors in the database, we tried to find the errors based on the recognition errors and classify several kinds of errors. To be more effective than typical recognition technique, we will develop the automatic error detection method. In the future, we will try to construct new databases reflecting the needs of companies and universities.

  • PDF