• Title/Summary/Keyword: Automatic Node Identification

Search Result 5, Processing Time 0.025 seconds

Verification of Communication Distance and Position Error of Electric Buoy for Automatic Identification of Fishing Gear (어구 자동 식별을 위한 전자 부이의 통신 거리 및 위치 오차 검증)

  • Kim, Sung-Yul;Yim, Choon-Sik;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.397-402
    • /
    • 2021
  • The real-name electric fishing gear system is one of the important policy capable to build 'abundant fishing ground' and to protect marine environment. And, fishing gear automatic-identification system is one of IoT services that can implement above-mentioned policy by using communication such as low power wide area (LPWA) and multi-sensing techniques. Fishing gear automatic -identification system can gather the location data and lost/hold data from electric buoy floated in sea and can provide them to fishermen and monitoring center in land. We have developed the communication modules and electric buoy consisted of fishing gear automatic-identification system. In this paper, we report the test results of communication distance between electric buoy and wireless node installed in fish boat and location error of electric buoy. It is confirmed that line of sight (LOS) distance between electric buoy and wireless node is obtained to be 62 km, which is two times of the desired value, and location error is obtained to be CEP 1 m, which is smaller than the desired value of CEP 5 m. Therefore, it is expected that service area and accuracy of the developed fishing gear automatic-identification system is more extended.

An Internet Stopper Using ARP Spoofing with Automatic Node Identification (자동 노드 인식 기능을 갖는 ARP 스푸핑을 이용한 인터넷 차단기)

  • Jung, In-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.93-106
    • /
    • 2011
  • In this paper we describe an efficient and easy to use internet stopper, which is called AINS (Automatic Internet Stopper), which uses ARP spoofing scheme. Instead of forwarding packets to router for the case of hacking, in ARP spoofing, the AINS ignores all the packets so that internet stopping operates. The AINS program needs to be installed only in manager computer that does not require additional agent program. In addition to setting manually the stopping computer list, it is able to indentify network nodes automatically by analyzing broadcasting packets. The experimental results show that less than 4 secs for spoofing interval is enough for blocking internet usage regardless the number of computers and therefore network overhead is negligible. The AINS can indentify and control network nodes not only on same subnet but also on different subnet only if they are connected onto same ethernet switch physically. It is being used for an efficient tool for controling internet usage of university computer laboratory and also for an efficient network management.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

Basic Tongue Diagnosis Indicators for Pattern Identification in Stroke Using a Decision Tree Method

  • Lee, Ju Ah;Lee, Jungsup;Ko, Mi Mi;Kang, Byoung-Kab;Lee, Myeong Soo
    • The Journal of Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Objectives: The purpose of this study was to specify major tongue diagnostic indicators and evaluate their significance in discriminating pattern identification subtypes in stroke patients. Methods: This study used a community based multi-center observational design. Participants (n=1,502) were stroke patients admitted to 11 oriental medical university hospitals between December 2006 and February 2010. To determine which tongue indicator affected each pattern identification, a decision tree analysis of the chi-square automatic interaction detector (CHAID) algorithm was performed. The chi-squared test was used as the criterion in splitting data with a p-value less than 0.05 for division, which is the main procedure for developing a decision tree. The minimum sample size for each node was specified as n =10, and branching was limited to two levels. Results: From the 9 tongue diagnostic indicators, 6 major tongue indicators (red tongue, pale tongue, yellow fur, white fur, thick fur, and teeth-marked tongue) were identified through the decision tree analysis. Furthermore, each pattern identification was composed of specific combinations of the 6 major tongue indicators. Conclusions: This study suggests that the 6 tongue indicators identified through the decision tree analysis can be used to discriminate pattern identification subtypes in stroke patients. However, it is still necessary to re-evaluate other pattern identification indicators to further the objectivity and reliability of traditional Korean medicine.

A Network Monitoring System with Automatic Node Identification (Network 모니터링을 위한 자동 노드 인식 기법)

  • 손민호;정인환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.619-621
    • /
    • 2004
  • ARP는 IP 네트워크 상에서 IP 주소를 물리적 네트워크 주소로 대응시키기 위해 사용되는 프로토콜이다. 네트워크에서 데이터를 전송할 때는 컴퓨터간의 물리적 주소를 이용하여 전승하는데 이 물리적 주소는 각각의 랜카드마다 고유하게 갖는 값으로 네트워크에서는 실제로 데이터를 전달할 때 네트워크 카드가 가진 물리적 주소를 이용하여 전달 하지만 소프트웨어 차원에서는 IP 주소라는 것을 사용한다. ARP 프로토콜은 IP 주소를 실질적인 네트워크 어댑터의 물리적 주소와 연관시킬 때 사용되는 것이다. 본 논문에서는 ARP 동보 패킷을 이용한 네트워크 강시 대상 노드들의 정보를 자동적으로 구축하는 기능을 갖는 네트워크 모니터링 시스템을 설계하고 구현한다. 본 네트워크 모니터링 시스템은 ARP 동보 패킷을 분석하여 네트워크 감시 대상 노드들을 인식하고 NETBIOS 모듈을 이용한 노드 이름 확인과 Ping 모듈을 이용한 노드 상태 및 정보를 표시하며 주기적인 업데이트를 통해 노드 정보를 표시하는 기능을 갖는다.

  • PDF