• Title/Summary/Keyword: Automatic Machine Learning

Search Result 298, Processing Time 0.021 seconds

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

An Analytical Study on Performance Factors of Automatic Classification based on Machine Learning (기계학습에 기초한 자동분류의 성능 요소에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.2
    • /
    • pp.33-59
    • /
    • 2016
  • This study examined the factors affecting the performance of automatic classification for the domestic conference papers based on machine learning techniques. In particular, In view of the classification performance that assigning automatically the class labels to the papers in Proceedings of the Conference of Korean Society for Information Management using Rocchio algorithm, I investigated the characteristics of the key factors (classifier formation methods, training set size, weighting schemes, label assigning methods) through the diversified experiments. Consequently, It is more effective that apply proper parameters (${\beta}$, ${\lambda}$) and training set size (more than 5 years) according to the classification environments and properties of the document set. and If the performance is equivalent, I discovered that the use of the more simple methods (single weighting schemes) is very efficient. Also, because the classification of domestic papers is corresponding with multi-label classification which assigning more than one label to an article, it is necessary to develop the optimum classification model based on the characteristics of the key factors in consideration of this environment.

Automatically Bending Process control for Shaft Straightening Machine (축교정기를 위한 자동굽힘공정제어기 설계)

  • 김승철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.54-59
    • /
    • 1998
  • In order to minimize straightness error of deflected shafts, a automatically bending process control system is designed, fabricated, and studied. The multi-step straightening process and the three-point bending process are developed for the geometric adaptive straightness control. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and studied for the three-point bending processes. Selection of a loading point supporting condition are derved form fuzzy inference and fuzzy self-learning method in the multi-step straighternign process. Automatic straightening machine is fabricated by using the develped ideas. Validity of the proposed system si verified through experiments.

  • PDF

Design and Implementation of Machine Learning-based Blockchain DApp System (머신러닝 기반 블록체인 DApp 시스템 설계 및 구현)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.65-72
    • /
    • 2020
  • In this paper, we developed a web-based DApp system based on a private blockchain by applying machine learning techniques to automatically identify Android malicious apps that are continuously increasing rapidly. The optimal machine learning model that provides 96.2587% accuracy for Android malicious app identification was selected to the authorized experimental data, and automatic identification results for Android malicious apps were recorded/managed in the Hyperledger Fabric blockchain system. In addition, a web-based DApp system was developed so that users who have been granted the proper authority can use the blockchain system. Therefore, it is possible to further improve the security in the Android mobile app usage environment through the development of the machine learning-based Android malicious app identification block chain DApp system presented. In the future, it is expected to be able to develop enhanced security services that combine machine learning and blockchain for general-purpose data.

CNN and SVM-Based Personalized Clothing Recommendation System: Focused on Military Personnel (CNN 및 SVM 기반의 개인 맞춤형 피복추천 시스템: 군(軍) 장병 중심으로)

  • Park, GunWoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.347-353
    • /
    • 2023
  • Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.

DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features (악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델)

  • Dae-yeob Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.881-891
    • /
    • 2023
  • Recently, various studies on malicious URL detection using artificial intelligence have been conducted, and most of the research have shown great detection performance. However, not only does classical machine learning require a process of analyzing features, but the detection performance of a trained model also depends on the data analyst's ability. In this paper, we propose a DL-ML Fusion Hybrid Model for malicious web site URL detection based on URL lexical features. the propose model combines the automatic feature extraction layer of deep learning and classical machine learning to improve the feature engineering issue. 60,000 malicious and normal URLs were collected for the experiment and the results showed 23.98%p performance improvement in maximum. In addition, it was possible to train a model in an efficient way with the automation of feature engineering.

Effect of Application of Ensemble Method on Machine Learning with Insufficient Training Set in Developing Automated English Essay Scoring System (영작문 자동채점 시스템 개발에서 학습데이터 부족 문제 해결을 위한 앙상블 기법 적용의 효과)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1124-1132
    • /
    • 2015
  • In order to train a supervised machine learning algorithm, it is necessary to have non-biased labels and a sufficient amount of training data. However, it is difficult to collect the required non-biased labels and a sufficient amount of training data to develop an automatic English Composition scoring system. In addition, an English writing assessment is carried out using a multi-faceted evaluation of the overall level of the answer. Therefore, it is difficult to choose an appropriate machine learning algorithm for such work. In this paper, we show that it is possible to alleviate these problems through ensemble learning. The results of the experiment indicate that the ensemble technique exhibited an overall performance that was better than that of other algorithms.

A study on the difficulty adjustment of programming language multiple-choice problems using machine learning (머신러닝을 활용한 프로그래밍언어 객관식 문제의 난이도 조정에 대한 연구)

  • Kim, EunJung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • For the questions asked for LMS-based online evaluation the professor directly set exam questions, or use the automatic question-taking method according to the level of difficulty using the question bank divided by category. Among them, it is important to manage the difficulty of questions in an objective and efficient way, above all, in the automatic question-taking method according to difficulty. Because the questions presented to the evaluators may be different. In this paper, we propose an difficulty re-adjustment algorithm that considers not only the correct rate of a problem but also the time taken to solve the problem. For this, a logistic regression classification algorithm was used of machine learning, and a reference threshold was set based on the predicted probability value of the learning model and used to readjust the difficulty of each item. As a result, it was confirmed that there were many changes in the difficulty of each item that depended only on the existing correct rate. Also, as a result of performing group evaluation using the adjustment difficulty problem, it was confirmed that the average score improved in most groups compared to the difficulty problem based on the percentage of correct answers.

Issues and Empirical Results for Improving Text Classification

  • Ko, Young-Joong;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.150-160
    • /
    • 2011
  • Automatic text classification has a long history and many studies have been conducted in this field. In particular, many machine learning algorithms and information retrieval techniques have been applied to text classification tasks. Even though much technical progress has been made in text classification, there is still room for improvement in text classification. In this paper, we will discuss remaining issues in improving text classification. In this paper, three improvement issues are presented including automatic training data generation, noisy data treatment and term weighting and indexing, and four actual studies and their empirical results for those issues are introduced. First, the semi-supervised learning technique is applied to text classification to efficiently create training data. For effective noisy data treatment, a noisy data reduction method and a robust text classifier from noisy data are developed as a solution. Finally, the term weighting and indexing technique is revised by reflecting the importance of sentences into term weight calculation using summarization techniques.

Lightweight CNN based Meter Digit Recognition

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Image processing is one of the major techniques that are used for computer vision. Nowadays, researchers are using machine learning and deep learning for the aforementioned task. In recent years, digit recognition tasks, i.e., automatic meter recognition approach using electric or water meters, have been studied several times. However, two major issues arise when we talk about previous studies: first, the use of the deep learning technique, which includes a large number of parameters that increase the computational cost and consume more power; and second, recent studies are limited to the detection of digits and not storing or providing detected digits to a database or mobile applications. This paper proposes a system that can detect the digital number of meter readings using a lightweight deep neural network (DNN) for low power consumption and send those digits to an Android mobile application in real-time to store them and make life easy. The proposed lightweight DNN is computationally inexpensive and exhibits accuracy similar to those of conventional DNNs.