To obtain good summarization algorithms, we need first understand how people summarize videos. 'Semantic gap' refers to the gap between semantics implied in video summarization algorithms and what people actually infer from watching videos. We hypothesized that ERP responses to real time videos will show either N400 effects to topic-irrelevant shots in the 300∼500ms time-range after stimulus on-set or P600 effects to topic-relevant shots in the 500∼700ms time range. We recruited 32 participants in the EEG experiment, asking them to focus on the topic of short videos and to memorize relevant shots to the topic of the video. After analysing real time videos based on the participants' rating information, we obtained the following t-test result, showing N400 effects on PF1, F7, F3, C3, Cz, T7, and FT7 positions on the left and central hemisphere, and P600 effects on PF1, C3, Cz, and FCz on the left and central hemisphere and C4, FC4, P8, and TP8 on the right. A further 3-way MANOVA test with repeated measures of topic-relevance, hemisphere, and electrode positions showed significant interaction effects, implying that the left hemisphere at central, frontal, and pre-frontal positions were sensitive in detecting topic-relevant shots while watching real time videos.
지문영상의 품질 향상과 특징점 정합은 자동 지문인식 시스템의 중요한 두 단계이다. 본 논문에서는 특징점의 연결정보를 사용한 지문인식 기법을 제안한다. 인식 과정은 전처리와 특징점 추출, 그리고 특징점 pairing을 기반으로 한 정합의 세 단계로 이루어져 있다. 정확성을 위해 세선화된 이미지로부터 지문의 특징점을 추출한 후에, 특징점의 연결정보를 사용한 정합과정을 소개한다. 특징점 정합과정에서 연결정보를 사용하는 것은 간단하지만 정확한 방법이며, 두 지문의 비교단계에서 낮은 비용으로 기준 특징점 쌍을 선택하는 문제를 해결해 준다. 알고리즘은 지문의 회전과 이동에 무관하다. 정합 알고리즘은 반도체 칩방식 지문 입력장치로부터 획득한 500개의 지문영상으로 실험하였으며, 실험 결과는 기존 방법보다 오인식율은 줄어들고 정확도는 증가하였음을 보여준다.
We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.
본 논문에서는 고해상도의 항공 영상으로부터 건물의 3차원 정보를 자동으로 생성하는 방법을 제안하였다. 먼저 에지 보존 필터를 사용하여 영상에 포함된 잡음을 제거한 후에 watershed 기법을 이용하여 에지의 위치를 보존하고 영상 분할을 수행한다. 분할된 영역의 경계선에 위치한 화소의 곡률을 계산하여 control point를 검출하고 control point 사이의 선소를 추출한다. 추출된 선소들의 방향과 길이를 고려하여 선소의 연결을 수행하고 최종적으로 화소의 그레디언트 크기를 이용하여 선소의 위치를 조정한다. 공면의 그룹화와 다각형 조각을 형성하는 과정은 각 영역에 대해 공선 기하학과 비행 정보를 이용하여 정합된 3차원 선소들을 선택하여 이루어진다. 항공 영상에 제안한 방법을 적용하여 건물 지붕을 정확하게 검출할 수 있음을 보였다.
F-HMIPv6(Fast-Hierarchical Mobile IP version 6) 네트워크에서는 단말의 이동을 관리하기 위해 MAP(Mobility Anchor Point)를 사용한다. 현재는 매크로 핸드오프 발생 시 단말로부터 가장 멀리 떨어져있는 MAP을 선택하는 기법을 사용하고 있다. 그러나 이 경우 하나의 큰 MAP으로 전체 부하가 몰리는 문제와 이동 단말과 MAP간의 긴 거리로 인해 통신 비용이 증가하는 문제가 있다. 이 연구에서는 단말의 이동속도와 패킷 전송률을 고려하여 통신 비용을 최소화 하는 비용 효율적인 MAP을 선택 기법을 제안한다. 이를 위해 통신 비용을 바인딩 업데이트 비용과 데이터 패킷 전달 비용으로 구분하고 이 통신 비용을 최소화하는 MAP의 크기를 수식으로 표현한다.
본 논문은 RFID 보안 시스템에서 2단계 인증 과정을 통하여 RFID시스템의 안정성을 높이는 방법을 제안한다. 제안하는 시스템은 RFID 태그 인증 후 추가적으로 사용자를 인증하기 위하여 카메라를 통하여 입력된 사용자의 이미지 정보에서 특징을 추출 한다. 출입구에서 인증을 위해 먼저 RFID태그를 사용하여 인증하고, 다음으로 카메라를 통하여 획득한 사용자 이미지로부터 특징 정보를 추출하여 시스템에 등록된 사용자 정보와 유사도 비교를 통하여 최종 인증하는 시스템을 제안한다. RFID 시스템에서 사용하는 태그는 2.450Hz 대역의 다양한 주파수를 발진하는 능동형 태그를 사용한다. 또한 사용자 이미지의 특징 정보는 윤곽선 정보와 색상 특징 정보를 이용하여 시스템에 등록된 정보와 일치 하는지 유사도를 비교하여 인증할 수 있도록 하였다.
In this study, the researchers attempted to automate the process of painting the characters on the road surface, which is currently done by manual labor, by using the information and communication technology. Here are the descriptions of how we put in our efforts to achieve such a goal. First, we familiarized ourselves with the current regulations about painting letters or characters on the road, with reference to Road Mark Installation Management Manual of the National Police Agency. Regarding the graphemes, we adopted a new one using connection components, in Gothic print characters which was within the range of acceptance according to the aforementioned manual. We also made it possible for the automated program to recognize the graphemes by means of the feature dots of the isolated dots, end dots, 2-line gathering dots, and gathering dots of 3 lines or more. Regarding the database, we built graphemes database for plotting information, classified the characters by means of the arrangement information of the graphemes and the layers that the graphemes form within the characters, and last but not least, made the character shape information database for character plotting by using such data. We measured the layers and the arrangement information of the graphemes consisting the characters by using the information of: 1) the information of the position of the center of gravity, and 2) the information of the graphemes that was acquired through vertical exploration from the center of gravity in each grapheme. We identified and compared the group to which each character of the database belonged, and recognized the characters through the use of the information gathered using this method. We analyzed the input characters using the aforementioned analysis method and database, and then converted into plotting information. It was shown that the plotting was performed after the correction.
The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.
The information on the planar figure of the building envelope is commonly required in various criteria related to the energy performance of the building. However, since the method of creating varies depending on each criterion, the information displayed in the planar figure of the building envelope differs considerably according to the person making the figure. In this regard, this study sought to derive the commonly required information for the unification of the information included in the planar figure of the building envelope, and thus examine the standardization of the planar figure of the building envelope based on BIM. Towards this end, 1) the required information about the planar figure of the building envelope was derived through the literature review and case analysis results submitted to the energy performance evaluation agencies, and 2) the standardized output technology using IFC was investigated based on the required information. Therefore, it is expected that the findings of this study will help to create a general-purpose planar figure for the building envelope, and this study can serve as the preliminary research for automatically extracting the information on the planar figure of the building envelope.
The purpose of this study is to propose a modeling methodology through the exchange of coordinate data of a three-dimensional custom curtain wall panel between Rhino and Revit, and to examine the validity of the model implemented in the drawing. Although the modeling means and method are different, a fundamental principle is that all three-dimensional modeling begins by defining the position of the points, the most primitive element of geometry, in the XYZ coordinate space. For the BIM modeling methodology proposal based on this geometry basic concept, the functions and characteristics associated with the points of Rhino and Revit programs are identified, and then BIM implementation process model is organized and systemized through the setting of the interoperability process algorithm. The BIM implementation process model proposed in this study is (1) Modeling and panelizing surface into individual panels using Rhino and Grasshopper; (2) Extraction of vertex coordinate data from individual panels and create CSV file; (3) Curtain wall modeling through Adaptive Component Family in Revit and (4) Automatic creation of Revit curtain wall panels through API. The proposed process model is expected to help reduce design errors and improve component and construction quality by automatically converting general elements into architectural meaningful information, automating a set of processes that build them into BIM data, and enabling consistent and integrated design management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.