• 제목/요약/키워드: Automatic Changer

검색결과 46건 처리시간 0.022초

리니어 스케일을 이용한 NC 선반의 원 운동정도 측정 시스템의 구성 (Organization of Circular Motion Accuracy Measuring System of NC Lathe using Linear Scales)

  • 김영석;김재열;김종관;한지희;정정표
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.1-6
    • /
    • 2004
  • Measurements of circular motion accuracy of NC lathe have achieved with ball bar systems proposed by Bryan, but the ball bar systems have ifluenced on the measuring data by way of the accuracy of the balls and the contacts of balls and bar seats. Therefore in this study, error data during of circular motion of ATC(Automatic Tool Changer) of NC lathe will be acquired by reading zx plane coordinates using two optical linear scales. Two optical linear scales of measuring unit are fixed on z-x plane of NC lathe, and the moving part is fixed to ATC and then is made to receive data of coordinates of the ATC at constant time intervals using tick pulses comming out from computer. And then, error data files of radial direction of circular motion are calculated with the data read, and the aspect of circular motion are modeled to plots, and are analysed by means of statistical treatments of circularity, means, standard deviations etc.

Machining Center의 고속 ATC 제어 시스템의 개발 (Development of Control System of High-speed ATC of Machining Center)

  • 한동창;이동일;송용태;이석규
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.125-132
    • /
    • 2002
  • We use a compound-cam twin arm structure and random tool access method to achieve a faster ATC (Automatic Tool Changer) system for the accurate position and rotation control of a tool magazine and an exchange am. Based on the data obtained from various sensors, it is possible to follow the sequence of commands in each control step for an exchange arm. However, it is not so easy to reduce the exchange time of the system because of the slow responses of the sensors and execution mode delays of PLC (Programmable Logic Controller) scan time. In this paper, we propose a new programmed limit-switch position control method to obtain the shortest possible delays for the random tool access method and compound-cam twin arm structure. With some experimental results, we have achieved below 0.9sec tool exchange time with the proposed method.

리니어 모터 이송계를 이용한 초고속 라인 센터 개발 (Development of a High-speed Line Center using Linear Motor Feed System)

  • 백영종;허순;문홍만;최대봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.26-31
    • /
    • 2002
  • 본 연구는 초고속 지능형 라인센터 개발에 관한 것으로서 1 차 년도 볼 스크류 방식의 시험모델에 대한 종합 검토 결과를 바탕으로 2 차 연도에는 리니어 모터를 채택한 라인센터의 시제품 설계에 있어서 고속화를 위한 방안을 모색하고 컴팩트한 경량의 구조를 지향하는 라인 센터 구조물을 설계하였고, 3 차 년도에는 라인센터의 제작 및 종합적인 시험 평가를 통하여 상품화 모델을 정립하고자 하였다.

  • PDF

볼기어캠의 5-축 가공에 관한 연구 (A Study on the 5-Axis Machining for Ball Gear Cam)

  • 조현덕;우현구;신용범
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.98-104
    • /
    • 2020
  • In this work, a study on the 5-axis machining of ball gear cam is conducted which is a continuation of reference [1]. The ball gear cam used in this study delivers motion in conjunction with the ball supported by the turret. Therefore, it requires carbonizing heat treatment and is usually completed using a 4-axis machining with a carbide ball end mill. If the nose part of the ball end mill is not allowed to participate in the machining, then CBN tools without the nose part can be used. However, machining of certain shapes can be carried out only by contacting the ball in some of the areas on either side which can improve the surface of the machining. This requires a 5-axis machining in order to maintain a constant angle for the processing path. Therefore, in this work, the 5-axis machining method is studied in order to maintain the direction of the cutter axis at a constant angle with the tangent direction of the curve-ball gear cam. Furthermore, the 5-axis machining program for the ball gear cam was developed and the machining experiment was completed and verified.

사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가 (Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis)

  • 이여울;박철우;김진록;최현진
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

보건소(保健所)의 방사선과(放射線科) 업무(業務)에 관한 조사연구(調査硏究) (Survery on Business of the Departments of Radiology in Health Centers)

  • 최종학;전만진;허준;박성옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제8권2호
    • /
    • pp.21-28
    • /
    • 1985
  • We serveyed the actual condition of business of the departments of radiology of 45 health conters (except 3) in the area of Seoul, Kyungki and Inchon from March, 1984 to November, 1984. The results are summarized as follows : 1. T.O. of the radiologic technologist is three persons in each health center of Seoul area, and one person in each one of Kyungki and Inchon area. P.O. is 2-5 persons in Seoul area, 1-2 persons in Kyungki or Inchon area. 2. The number of all the radiologic technologists employed now is 75 persons, and among all of them, when analized by position class 7th is 54.7%, class 8th 28.0%, class 9th is 13.3%, and class 6th is 2.7%, and by sex, female is 68.0%, male is 32.0%, by educational background, for the most part, junior college graduates come to 73.3%, by age group 60% of them is in their twenties, 16.0% is in their thirties and forties, 8.0% is in their fifties, and by career after certificate 60% have the career of 1-5 years, 13.3% have the one of 6-7 years or mor than 21 years, and 6.7% have the one of 11-15 years of 16-20 years. 3. All the diagnostic x-ray equipment being kept is 62, and among them flxing equipment is 71.0%, portable equipment is 29.0% and by rating of X-ray equipment, maximum tube current 100 mA is 46.8%, maximum KV 100KVP is 72.6%, the most part. 4. Photofluorographic camera and hood are equipped in every health center. While, as to the radiographic cassettes, $14{\times}14"$ cassetts are equipped in every health center, but cassettes of other sizes are in half of them. 5. Bucky's table is equipped in 11.9% health centers, the automatic processor is in 21.4%, the photofluorographic film changer is 9.5%, the grid is 73.8%, the protective apron is in 88.1%, and the protective glove is in 57.1% health centers. 6. The number of the people who got the x-ray examination for one year (by the year 1989) is the most, 1,000-6,000 in direct radiography of the chest, or 15,0001-45,000 in the health centers of Seoul area, 5,000-20,000 in Kyungki and Inchon area in photofluorography of the chest. Moreover, other radiographies are being taken extremely limitedly in all health centers. 7. In processing types of x-ray film, automatic processing is used in 9 health centers (21.4%), manual tank processing is in 30 (71.4%), and manual tray processing in 3 (7.2%). 8. As for collimation of x-ray exposure field, "continual using restricted by a subject size" has the most part, 78.6% "restricted using at every radiography" has 19%, and the case of "never considered" has 2.4% response. 9. As for the dosimeter used for radiation control, film badge (35.7%) and pocket dosimeter (26.2%) are used, and in 38.1% health centers the dosimeter is not equipped at all. Consideration of the previous radiation exposure is being done in only one health center. 10. Reading of radiographs is mainly depended on the radiologists electively (45.2%) or on the genral practitioners(45.2%).

  • PDF