• Title/Summary/Keyword: Automatic & Adaptive Control

Search Result 158, Processing Time 0.028 seconds

Comparison between Fuzzy and Adaptive Controls for Automatic Steering of Agricultural Tractors (농용트랙터의 자동조향을 위한 퍼지제어와 적응제어의 비교)

  • 노광모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 1996
  • Automatic guidance of farm tractors would improve productivity by reducing operator fatigue and increasing machine performance. To control tractors within $\pm$5cm of the desired path, fuzzy and adaptive steering controllers were developed to evaluate their characteristics and performance. Two input variables were position and yaw errors, and a steering command was fed to tractor model as controller output. Trapezoidal membership functions were used in the fuzzy controller, and a minimum-variance adaptive controller was implemented into the 2-DOF discrete-time input-output model. For unit-step and composite paths, a dynamic tractor simulator was used to test the controllers developed. The results showed that both controllers could control the tractor within $\pm$5cm error from the defined path and the position error of tractor by fuzzy controller was the bigger of the two. Through simulations, the output of self-tuning adaptive controller was relatively smooth, but the fuzzy controller was very sensitive by the change of gain and the shape of membership functions. Contrarily, modeling procedure of the fuzzy controller was simple, but the adaptive controller had very complex procedure of design and showed that control performance was affected greatly by the order of its model.

  • PDF

Position Control of the Pneumatic Excavator System Using Adaptive Sliding Mode Controller (적응슬라이딩 모드 제어기를 이용한 공압굴삭기 시스템의 위치 제어)

  • Lim, Tae-Hyeong;Cheon, Se-Young;Yang, Soon-Yong;Choi, Jeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.82-87
    • /
    • 2007
  • Excavator has been used in wide field since the attachment in the end effect can be changeable according to the purpose of working. However, efficiency of work using excavator mainly depends on an operator's ability. For the purpose of improving the efficiency of work and reducing the fatigue of operator, the automatic excavator system has been researched. In this paper, the tracking control system of each links of excavator is designed before developing the automatic excavator system. In order to apply the tracking control system, the pneumatic excavator system is developed and the tracking control system is applied. For designing the tracking control system, the adaptive sliding mode control algorithm is proposed. The performance of the proposed control system is evaluated through experiments using the pneumatic excavator system.

Constrained Adaptive Backstepping Controller Design for Aircraft Landing in Wind Disturbance and Actuator Stuck

  • Yoon, Seung-Ho;Kim, You-Dan;Park, Sang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.74-89
    • /
    • 2012
  • An adaptive backstepping controller is designed for the automatic landing of a fixed-wing aircraft. The backstepping control scheme is adopted by using the nonlinear six degree-of-freedom dynamics of the aircraft during the landing phase. The adaptive law is integrated along with the backstepping controller in order to estimate the aircraft modeling errors as well as the external disturbance. The dynamic constraints of the states and the actuator inputs are taken into account in the parameter adaptation. This is done to prevent an aggressive adaptation and to provide reliable control commands. Numerical simulations were performed to verify the performance of the proposed control law for the landing of the aircraft with the presence of gust and actuator stuck.

Development of Shaft Straightening Machine with Springback Observer (스프링백 관측기를 이용한 축교정기 개발)

  • 안중용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In order to compensate for out-of-straightness of shafts, an automatic straightening process composed of an automatic measuring module, an automatic control unit and operating softwares was developed with a hydraulic press. The out-of-sraightness of each shaft was measured automatically in the measuring stage. An optimal pressure point was determined to minimize TIR value of the shaft according to press count of 3-points bending process. In the geometric adaptive control procedure, punch stroke and springback of the shaft were predicted by an observer using on-line measured values of press force and deflection amount I each press count. An automatic straightening machine was realized with the measuring module, the GAC module, PLD, IBM-PC and the operating software on the hydraulic press. the validity of the proposed straightening process was confirmed through a series of experiments with cam shafts.

  • PDF

Yaw Angle Command Generation and Adaptive Fuzzy Control for Automatic Route Tracking of Ships (선박자동항로 추적을 위한 회두각 명령의 생성과 적응 퍼지제어)

  • 이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.199-208
    • /
    • 2001
  • In this paper, an automatic route tracking algorithm using the position variables and the yaw angle of a ship is suggested, Since most autopilot systems paly only a role of course-keeping by integrating the gyrocompass output, they cannot cope with position errors between the desired route and real route of the ship resulted from a drifting and disturbances such as wave, wind and currents during navigation. In order for autopilot systems to track the desired route, a method which can reduce such position errors is required and some algorithms have been proposed[1,2]While such were turned out effective methods, they have a shortage that the rudder control actions for reducing the position errors are occurred very frequently. In order to improve this problem it is necessary to convert that error into the corresponding yaw angle and necessary to treat only yaw angle control problem. To do this a command generation algorithm which converts the rudder angle command reducing the current position error into they yaw angle command is suggested. To control the ship under disturbances and nonlinearities of the ship dynamics, the adaptive fuzzy controller is developed. Finally, through computer simulations for two ship models, the effectiveness of the suggested method and the possibility of the automatic route tracking are assured.

  • PDF

A Study on the Automatic Pressure Controller Using Adaptive Control Algorithma (적응 제어 방식을 이용한 혈압자동 조절기에 관한 연구)

  • 이상훈;김영철;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.648-651
    • /
    • 1986
  • Sometimes, there are conditions when rapid control of the hypertension needed such as malignant hypertension, and the preoperative pereparation of the hypertensive patient requiring emergency operation, etc. Using the adaptive control algorithm, the mean arterial pressure reduction is achived rapidly and safely in hypertensive rabbit. Among the adaptive control algorithms the pole assignment self tuning control algorithm is superial to the one step ahead minium variance control algorithm. The convergence time is less than 600 sec, and the standard deviation of experimental data are less than 4 mmHg.

  • PDF

A Study on Implementation of Hydroponics Automation System using Adaptive Fuzzy Control (적응 퍼지 제어기를 이용한 수경재배 자동화를 위한 연구)

  • 노명균;김승우;홍상은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.111-114
    • /
    • 1996
  • Hydroponics is to grow plants, not in soil but in water which the quantity of necessary chemical food can be controlled. In this paper, this is designed in the automatic system. The closed culture reduces cost of production and produces a many kinds of agricultural products in a confined place. An adaptive fuzzy control in the best method to solve and to overcome parametric uncertainties and non-linearity of the controlled system. A hydroponics automation system which is able to overcome these control problems. It is used in implementation of the hydroponics automation system. The performance is analyzed through an experiment in which the new adaptive fuzzy control method is applied to the automatic control of tomato hydroponics.

  • PDF

Sensorless Sliding Mode Control of an Induction Motor using Adaptive Speed Observer (적응 속도 관측기를 사용한 유도전동기의 센서리스 슬라이딩 모드 제어)

  • Jie, Min-Seok;Kim, Chin-Su;Lee, Jae-Yong;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 2006
  • In the paper propose a sensorless sliding mode control method of an induction motor using an adaptive speed control. The control objective is apply to adaptive speed observer instead of a encoder and to remove errors using the sliding mode current controller by parameters variation and disturbances that include the current controller. A stability of the sliding mode current controller and the adaptive speed observer using a design controller is guaranteed by the Lyapunov stability criterion. The performance of the proposed control system is demonstrated by simulation using the matlab silmulink and experimental results using induction motor show that the proposed method can apply an induction motor control.

  • PDF

The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics (적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현)

  • Kim, Myeong-Jung;Lee, Chang-Gu;Kim, Seong-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANNAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection c! the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANNAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented.

  • PDF