• 제목/요약/키워드: Automated synoptic observing system

검색결과 59건 처리시간 0.024초

설계강우량 산정을 위한 매개변수 추정방법 평가 (Evaluation of Parameter Estimation Method for Design Rainfall Estimation)

  • 김귀훈;전상민;장정렬;송인홍;강문성;최진용
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.87-96
    • /
    • 2021
  • Determining design rainfall is the first step to plan an agricultural drainage facility. The objective of this study is to evaluate whether the current method for parameter estimation is reasonable for computing the design rainfall. The current Gumbel-Kendall (G-K) method was compared with two other methods which are Gumbel-Chow (G-C) method and Probability weighted moment (PWM). Hourly rainfall data were acquired from the 60 ASOS (Automated Synoptic Observing System) stations across the nation. For the goodness-of-fit test, this study used chi-squared (𝛘2) and Kolmogorov-Smirnov (K-S) test. When using G-K method, 𝛘2 statistics of 18 stations exceeded the critical value (𝑥2a=0.05,df=4=9.4877) and 10, 3 stations for G-C method, PWM method respectively. For K-S test, none of the stations exceeded the critical value (Da=0.05n=0.19838). However, G-K method showed the worst performances in both tests compared to other methods. Subsequently, this study computed design rainfall of 48-hour duration in 60 ASOS stations. G-K method showed 5.6 and 6.4% higher average design rainfall and 15.2 and 24.6% higher variance compared to G-C and PWM methods. In short, G-K showed the worst performance in goodness-of-fit tests and showed higher design rainfall with the least robustness. Likewise, considering the basic assumptions of the design rainfall estimation, G-K is not an appropriate method for the practical use. This study can be referenced and helpful when revising the agricultural drainage standards.

경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석 (Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do)

  • 강유진;김형수;김동현;왕원준;이하늘;서민호;정윤재
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.1-18
    • /
    • 2022
  • 현재 우리나라 기상청에서는 6개월 누적강수량 기준인 SPI6(standardized precipitation index 6)을 이용하여 기상가뭄을 지역별로 평가하고 있다. 하지만, SPI는 69개 기상관측소의 강수량만을 고려하여 산정되는 지수로 복합적인 이유로 나타나는 가뭄사상은 정확하게 판단하지 못하고 있는 실정이다. 따라서, 본 연구의 목적은 강수량만을 고려한 SPI와 강수량, 식생지수 및 기온을 복합적으로 고려하는 SDCI(Scaled Drought Condition Index)를 경기도 지역을 대상으로 산정 및 비교하고자 하였다. 또한, SPI와 SDCI의 비교를 통해 산정된 결과를 활용하여 지점자료기반 가뭄지수와 위성영상기반 가뭄지수의 장단점을 파악하고자 하였다. SDCI를 산정하기 위해 MODIS(MODerate resolution Imaging Spectroradiometer) 위성영상자료, 종관기상관측(ASOS) 자료 및 크리깅 기법을 사용하였다. 강수량의 지속기간은 2014년의 8개 시점에 대해 1개월, 3개월, 6개월을 각각 적용하여 SDCI1, SDCI3, SDCI6을 산정하였다. SDCI 산정 결과, SPI와 달리 약 두달 전부터 가뭄양상을 나타내기 시작하여 경기도 시군별 가뭄에 대해서 잘 드러냈다. 이를 통해, 위성영상자료와 지점자료의 결합이 가뭄지수 변화 양상에 있어서 효율성을 높였으며, 기존의 건조 지역과 더불어 습윤 지역에 대해 가뭄예측 가능성을 증대시켰음을 파악할 수 있었다.

분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측 (High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS)

  • 김소현;김보미;이가림;이예원;노성진
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.333-346
    • /
    • 2024
  • 수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.

고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구 (Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province)

  • 신설은;이승재;노일석;김수현;소윤영;이서연;민병훈;김규랑
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.312-326
    • /
    • 2020
  • KMAPP은 규모상세화 과정을 통해 100 m 단위의 초고해상도 기상 예측을 산출하는 체계로써 최근 수문, 농업, 신재생에너지 등 다양한 분야에서 활용되기 시작됨에 따라 각 분야별로 예측성능을 검증할 필요가 있다. 철원 지역과 전북 지역은 산지가 많은 우리나라에서 비교적 넓은 범위에 걸쳐서 수평면을 보유하고 있으며, 특히 철원은 대규모 벼 논 재배지역 중에서 실측 및 원격탐사 생물계절 자료가 많은 지역으로 KMAPP 예측 성능을 검증하는데 필요한 관측자료를 사용하기에 적절한 지점으로 판단된다. 이번 연구에서는 철원 내 농경지역의 생태적 변화에 따라 변화하는 KMAPP 기온 예측 성능을 AWS와 ASOS 관측자료를 이용하여 비교 검증하였다. 그리고 전북지역 폭염 기간 동안 가축 고온스트레스 모델과 같은 응용모델에 KMAPP 예측 자료를 입력자료로 활용하는 것을 검토하고자 일사량 예측을 ASOS 자료를 이용하여 검증하였다. 더 많은 사례의 수집과 선정이 필요하다는 한계가 있지만 농경지역에서 추수 후 기온 예측 성능이 일반 주택지 에서보다 더 크게 향상된 것을 통해 생물리적 효과가 예측 정확도에 미치는 영향을 간접적으로 추측해 볼 수 있었다. 한편, 일사량 예측의 경우 단위 변환에 따른 오차가 발생하지만 관측값과 일치하는 경향을 보여 KMAPP 자료가 지역규모의 상세 예측 자료로 응용모델에 활용될 수 있을 것으로 기대된다.

기계학습을 이용한 벼 수발아율 예측 (Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning)

  • 반호영;정재혁;황운하;이현석;양서영;최명구;이충근;이지우;이채영;윤여태;한채민;신서호;이성태
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.239-249
    • /
    • 2020
  • 본 연구는 자연 조건에서 쌀가루용 벼의 수발아율을 예측하기 위한 것으로 기계학습을 이용하여 기상요소들에 따른 수발아율을 간단히 예측할 수 있는 초기 시스템을 개발하기 위해 수행되었다. 이를 위하여 강원도, 충청북도, 경상북도에 위치한 6개 지역에서 쌀가루용 벼 3품종을 재배하였다. 수확 후 수발아율과 출수일을 조사하였으며, 각 지역의 종관기상대의 일평균 기온과 상대 습도, 그리고 강수량 정보를 이용하여 기계학습 모델 중 하나이며, 정확도가 높은 GBM 모델로 수발아율을 예측하였다. 2017년부터 2019년까지 강원과 충북, 그리고 경북의 6개 지역에서 쌀가루 용 벼 3품종에 대해 재배 실험을 수행하였다. 조사 항목은 출수일과 수발아율이었다. 기상자료는 동일한 지역명의 종관기상대를 이용하여 일 평균 기온 및 상대 습도, 그리고 강수량 자료를 수집하였다. 수발아율 예측을 위해 기계학습 모델인 Gradient Boosting Machine (GBM)을 이용하였으며, 학습 투입 변수로는 평균 기온과 상대 습도, 그리고 총 강수량이었다. 또한 수발아 피해 관련 기간을 설정하기 위해 출수 후 몇일 후부터 그 이후의 기간에 대한 실험도 수행하였다. 자료는 수발아 피해 관련 기간의 교정을 위한 training-set과 vali-set, 검증을 위한 test-set으로 구분하였다. training-set과 vali-set으로 교정한 결과, 출수 후 22일 후부터 24일동안에서 가장 높은 score를 나타내었다. test-set으로 검증한 결과는 3.0%보다 낮은 구간에서 수발아율을 약간 높게 예측한 경향이 있었지만, 높은 예측력을 보였다(R2=0.76). 따라서, 기계학습을 이용하여 특정기간동안의 기상요소들로 수발아율을 간단하게 예측할 수 있을 것으로 예상된다. 본 연구의 결과를 종합해 볼 때, 기계학습을 이용하여 특정 기간 동안에 평균 기온과 상대 습도, 그리고 총 강수량으로 높은 수발아율 예측 성능을 보였으며, 이 시스템을 이용하여 일반 농가들을 대상으로 수발아에 관한 피해를 예방할 수 있는 조기 수발아 예측 시스템으로 이용가능 할 것으로 판단된다. 하지만 품종마다 휴면 정도 차이로 인한 수발아 관련 기간에 차이가 있으므로, 다른 쌀가루용 벼 품종에 대해서도 추가로 조사하고, 개별 품종으로 세분화하여 분석한다면 좀 더 정확도 높은 예측 시스템을 개발할 수 있을 것으로 판단된다.

고해상도 재분석자료와 관측소 1시간 평균 지상 온도 비교 (Comparisons of 1-Hour-Averaged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations)

  • 송형규;윤대옥
    • 한국지구과학회지
    • /
    • 제41권2호
    • /
    • pp.95-110
    • /
    • 2020
  • 본 연구에서는 고해상도 ERA5 재분석자료 중 우리나라 지상 온도 자료의 신뢰성을 검증할 목적으로 종관기상관측소(ASOS) 관측자료와 비교를 수행하였다. 새롭게 생산되어 배포 중인 ERA5 재분석자료는 높은 시·공간적 해상도를 가져 여러 분야에 활용성이 매우 높다. 자료의 분석 기간은 ASOS 61개 관측소가 1999년 이후로 결측률이 매우 낮으며 시간평균 자료를 제공한다는 점을 고려하여 1999-2018년 기간으로 설정하였다. ERA5 격자 자료는 격자 내 90-m 수치표고모델(DEM) 분포로부터 내륙, 해안, 산악 지역에 해당하는 지형학적인 특성에 따라 분류하여 ASOS 지점 자료와 비교되었다. 분석 기간 전체에 대한 평균 지상 온도는 ASOS와 ERA5 모두 공간 분포의 패턴과 값은 큰 차이없이 유사하였다. ASOS와 ERA5의 산점도 비교를 통해 전체 기간, 특히 여름, 겨울 기간에 대해 계절 변동성을 가진다는 특성을 확인할 수 있었으며, 이는 달별 두 자료 사이의 매시간 차이 확률밀도함수(PDF)의 시계열을 통해서도 확인되었다. 두 자료 사이의 차이를 통계지수인 NMB, RMSE를 계산하여 정량화시켰을 때, 각 값에서 지역적인 특성을 보였으나 모든 지수에서 큰 차이가 없다고 판단할 수 있었으며, 상관성을 보기 위해 R과 IOA를 통해 구한 값은 모두 0.99에 근접하였다. 특히 일평균 산출에 있어 1-시간-평균 값 24개를 이용한 일평균의 경우가 최고와 최저온도의 평균을 이용하는 일평균에 비해 오차가 작게 나타났고, 두 자료 사이의 상관성도 높게 나타남을 확인하였다. 두 자료의 차이가 나타나는 원인으로 ERA5 격자 내 지형 효과가 가장 클 것으로 판단하여 수치표고모델을 활용하여 각 지역별 PDF를 이용해 첨도 및 왜도를 구하고, 이를 온도 차이 파워 스펙트럼의 1년 주기 변동 크기와 비교하였다. 그 결과, 양의 상관성을 가졌음을 확인하였다. 이는 지형 효과가 두 자료 차이의 원인이라고 설명하는 결과이다.

우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정 (Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea)

  • 황선아;한경화;장용선;조희래;옥정훈;김동진;김기선;정강호
    • 한국농림기상학회지
    • /
    • 제21권4호
    • /
    • pp.238-249
    • /
    • 2019
  • 기준증발산량은 기온, 풍속, 습도 등 기상요소를 바탕으로 추정하는 방법을 이용하고 있으며, Hargreaves 공식은 기온자료를 이용하여 기준증발산량을 산정할 수 있는 간단한 경험식이라 할 수 있다. 그러나 Hargreaves 공식은 풍속이 3 m s-1 이상인 지역에서는 과소평가 되고, 상대습도가 높은 지역은 과대평가 되는 경향이 있다. 본 연구에서는 Hargreaves 공식을 우리나라에 적용하기 위해 보다 정확한 기준증발산량 추정이 가능하도록 계수 산정 연구를 수행하였다. 우리나라 종관기상관측지점(ASOS, Automated Synoptic Observing System)의 최근 11 년(2008-2018) 동안의 기상자료를 이용하여 Panman-Monteith 공식으로 기준증발산량을 추정하였고, 이 값을 기준으로 하여 각 지점별로 Hargreaves 공식의 계수를 보정하였다. 우리나라 82 개 지점에 대하여 지역별로 보정된 계수는 내륙지역이 50 개 지점이며, 0.00173~0.00232(평균0.00196)로 기본값인 0.0023 과 비슷하거나 낮게 산정되었다. 반면, 해안지역은 32 개 지점이며 지역별로 보정된 계수의 범위는 0.00185~0.00303(평균 0.00234)으로 동해안지역은 기본값과 비슷하거나 높게 산정된 반면, 서해안과 남해안지역은 지역별로 편차가 크게 나타났다. Hargreaves 공식의 계수를 보정하여 기준증발산량을 추정한 결과 RMSE(Root Mean Square Error)는 계수 보정 전 0.634~1.394(평균 0.857)에서 계수 보정 후 0.466~1.328(평균 0.701)로 낮아지고, NSC(Nash-Sutcliffe Coefficient)는 계수 보정 전 -0.159~0.837(평균 0.647)에서 계수 보정 후 -0.053~0.910(평균 0.755)로 높아짐에 따라 기준증발산량의 추정효율이 크게 향상되는 것으로 나타났다. 연구 결과, Hargreaves 공식을 그대로 이용할 경우 Penman-Monteith 공식에 비해 과대 또는 과소 산정될 수 있음을 확인하였으며, 계수를 보정하여 이용할 경우 정확도가 높은 기준증발산량을 추정할 수 있을 것으로 판단된다.

CFD 모델을 이용한 도시 재정비 사업에 의한 NOX 분포 변화 모의 (CFD Simulation of Changesin NOX Distribution according to an Urban Renewal Project)

  • 김지현;김연욱;도현석;곽경환
    • 환경영향평가
    • /
    • 제30권3호
    • /
    • pp.141-154
    • /
    • 2021
  • 본 연구에서는 전산유체역학(CFD) 모델을 이용한 수치 모의에서 춘천시 약사지구 도시 재정비 사업에 의한 약사천 복원과 아파트 단지 건설이 주변 지역의 오염물질 농도에 미치는 영향을 분석하였다. 사업에 의한 영향을 비교하기 위해 도시재정비 사업 전과 후인 2011년과 2017년의 지형 자료를 이용하여 바람장과 오염물질 농도장을 모의하였다. 수치 실험에서 아파트 단지 건설의 영향과 하천 복원의 효과를 구분하여 분석하도록 시나리오를 구성하였다. 대상 지역의 평균적인 배경 바람장을 반영하기 위해 춘천 종관기상관측소(ASOS)의 풍향 및 풍속 자료를 유입 경계 조건으로 사용하고, 모의 결과를 유입 풍향의 8방위별 빈도에 따라 가중평균하였다. 시나리오 간 건물·지형 변화에 따른 풍속과 NOX 농도 분포의 차이를 비교하였다. 그 결과 주변 도로에서 배출된 NOX 농도는 아파트 단지 건설에 의해 증가하였으며, 아파트 단지 건설과 하천 복원을 함께 고려한 결과에서는 증가 폭이 감소하였다. 이를 지점별로 나누어볼 때, 복원한 하천 주변으로는 NOX 농도가 감소하는 한편, 건설한 아파트 단지 주변으로는 농도가 크게 증가하였다. 아파트 단지 주변의 NOX 농도 증가는 풍향을 기준으로 아파트 단지의 후면에 위치한 곳에서 더욱 뚜렷하였으며, 그 영향은 건물 높이까지 나타났다. 이러한 결과를 통해 사업 대상 지역의 주풍향에 대한 아파트 단지 건설과 하천 복원의 상대적인 배치가 주변 대기질을 결정하는 주요 요소임을 확인하였다.

기계학습모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량에 미치는 피해 산정 (Calculation of Damage to Whole Crop Corn Yield by Abnormal Climate Using Machine Learning)

  • 김지융;최재성;조현욱;김문주;김병완;성경일
    • 한국초지조사료학회지
    • /
    • 제43권1호
    • /
    • pp.11-21
    • /
    • 2023
  • 본 연구는 기계학습을 기반으로 제작한 수량예측모델을 이용하여 PCR 4.5 시나리오에 따른 사일리지용 옥수수(WCC)의 피해량 산정 및 전자지도를 작성할 목적으로 수행하였다. WCC 데이터는 수입적응성 시험보고서(n=1,219), 국립축산과학원 시험연구보고서(n=1,294), 한국축산학회지(n=8), 한국초지조사료학회지(n=707) 및 학위논문(n=4)에서 총 3,232점을 수집하였으며, 기상데이터는 기상청의 기상자료개방포털에서 수집하였다. 본 연구에서 이상기상에 따른 WCC의 피해량은 RCP 4.5 시나리오에 따른 월평균기온 및 강수량을 시간단위로 환산하여 준용하여 산정하였다. 정상기상에서 DMY 예측값은 13,845~19,347 kg/ha 범위로 나타났다. 이상기상에 따른 피해량은 이상기온 2050 및 2100년 각각 -263~360 및-1,023~92 kg/ha, 이상강수량 2050 및 2100년 각각 -17~-2 및-12~2 kg/ha였다. 월평균기온이 증가함에 따라서 WCC의 DMY는 증가하는 경향으로 나타났다. RCP 4.5 시나리오를 통해 산정한 WCC의 피해량은 QGIS를 이용하여 전자지도로 제시하였다. 본 연구는 온실가스 저감이 진행된 시나리오를 이용했지만, 추가 연구는 온실가스 저감이 되지 않은 RCP 시나리오를 이용한 연구를 수행할 필요가 있다.