• Title/Summary/Keyword: Automated Sample Preparation

Search Result 11, Processing Time 0.021 seconds

Optimization of Automated Suspension Trapping Digestion in Bottom-Up Proteomics via Mass Spectrometry

  • Haneul Song;Yejin Jeon;Iyun Choi;Minjoong Joo;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.62-68
    • /
    • 2024
  • The Suspension Trapping (S-Trap) method has been a prominent sample preparation technique since its introduction in 2014. Its capacity to induce protein aggregation using organic solvents has significantly improved protein purification and facilitated peptide identification. However, its full potential for automation has been limited by the lack of a suitable liquid handling system until recently. In this study, we aimed to enhance the automation of S-Trap sample preparation by optimizing the S-Trap digestion process, incorporating triethylammonium bicarbonate (TEAB) and CaCl2. The utilization of TEAB buffer conditions in this innovative process led to a noteworthy 12% improvement in protein identification. Additionally, through careful observation of various incubation conditions, we streamlined the entire sample preparation workflow into a concise 4 hours timeline, covering reduction, alkylation, and trypsin incubation stages. This refined and expedited automated S-Trap digestion process not only showcased exceptional time efficiency but also improved trypsin digestion, resulting in increased protein identification.

An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.25-29
    • /
    • 2013
  • Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution) method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

The Analysis of Free Amino Acids in Tobacco (잎담배 중 유리 아미노산 분석)

  • Lee, Jeong-Min;Min, Hey-Jung;Jang, Gi-Chul;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.70-76
    • /
    • 2010
  • A simple and sensitive automatic amino acid analyzer method for the determination of free amino acids in tobacco was described. Sample preparation consisted of a single step of extraction with 0.1 mol HCl at ambient temperature in 60 min by sonication, followed by filtration of an aliquot. Automated amino acid analyzer was used to construct a post-column ninhydrin reaction unit to monitor amino acids separated by liquid chromatography using a series of eluting buffers. By optimization of sample preparation, separation of 19 amino acids was achieved. Limits of quantitation was 0.01 mg/g, coefficients of variation ranged from 0.5 % to 8.9 % and recoveries range from 85 % to 106 %. The method was applied to the analysis of amino acids contents of tobacco leaves in different varieties.

Strategies for finding the adequate air void threshold value in computer assisted determination of air void characteristics in hardened concrete

  • Duh, David;Zarnic, Roko;Bokan-Bosiljkov, Violeta
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.101-116
    • /
    • 2008
  • The microscopic determination of air void characteristics in hardened concrete, defined in EN 480-11 as the linear-traverse method, is an extremely time-consuming and tedious task. Over past decades, several researchers have proposed relatively expensive mechanical automated systems which could replace the human operator in this procedure. Recently, the appearance of new high-resolution flatbed scanners has made it possible for the procedure to be automated in a fully-computerized and thus cost-effective way. The results of our work indicate the high sensitivity of such image analysis automated systems firstly to the quality of sample surface preparation, secondly to the selection of the air void threshold value, and finally to the selection of the probe system. However, it can be concluded that in case of careful validation and the use of the approach which is proposed in the paper, such automated systems can give very good estimate of the air void system parameters, defined in EN 480-11. The amount of time saved by using such a procedure is immense, and there is also the possibility of using alternative stereological methods to assess other, perhaps also important, characteristics of air void system in hardened concrete.

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

Determination of Inorganic Phosphate in Paprika Hydroponic Solution using a Laboratory-made Automated Test Stand with Cobalt-based Electrodes (코발트전극과 자동시험장치를 이용한 파프리카 양액 내 무기인산 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Kwon, Soon-Goo;Roh, Mi-Young;Kang, Chang-Ik;Jung, Ho-Seop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.326-333
    • /
    • 2011
  • The need for rapid on-site monitoring of hydroponic macronutrients has led to the use of ion-selective electrodes, because of their advantages over spectrophotometric methods, including simple methodology, direct measurement of analyte, sensitivity over a wide concentration range, and low cost. Stability and repeatability of response can be a concern when using multiple ion-selective electrodes to measure concentrations in a series of samples because accuracy might be limited by drifts in electrode potential. A computer-based measurement system could improve accuracy and precision because of both consistent control of sample preparation and easy calibration of sensors. Our goal was to investigate the applicability of a cobalt-based electrode used in conjunction with a laboratory-made automated test stand for quantitative determination of ${PO_4}^-$ in hydroponic solution. Six hydroponic solutions were prepared by diluting highly concentrated paprika hydroponicsolution to provide a concentration range of 1 to 300 ppm $PO_4$-P. A calibration curve relating electrode response to phosphate in paprika hydroponic solution titrated to pH 4 with 0.025M KHP was developed based on the Nikolskii-Eisenman equation with a coefficient of determination ($R^2$) of 0.94. The laboratory-made test stand consisting of three cobalt-based electrodes measured phosphate concentrations similar to those obtained with standard laboratory methods (a regression slope of 0.98 with $R^2$ = 0.80). However, the y intercept was relatively high, 30 ppm, probably due to the relatively large amount of variation present among multiple measurements of the same sample. Further studies on the high variation in EMFs obtained with cobalt electrodes during replicate measurements were required for P estimations comparable to those obtained with standard laboratory instruments.

Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve (자동 흙-함수특성곡선 시험장치 구축 및 활용)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.

A Study on the Standardization of Sample Preparation for Urine Sediment Microscopic Examination (요침사 현미경검사를 위한 표본제작의 표준화 연구)

  • Hyeok Jae LEE;Dae Heon KIM;Min-Hyeok LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.135-146
    • /
    • 2024
  • Urinalysis is a fundamental diagnostic test routinely performed in clinical laboratories. We evaluated two manual microscopy methods, including a novel protocol, against the standardized chamber method. A total of 402 specimens, comprising 201 positive each for red blood cells (RBCs) and white blood cells (WBCs) by the strip test and automated urine sediment analyzer, were selected for the analysis. The correlation coefficients between the standardized chamber method and the novel protocol RBC and WBC test were both r=0.98, indicating a high degree of correlation. The pair-wise agreement rates for the same grade between these two methods were 86.1% for RBCs and 88.6% for WBCs, with rates within one grade difference of both at 99.5%. In contrast, the agreement rates between the standardized chamber method and smaller or medium-sized laboratory methods were notably lower, with the same-grade rates at 11.9% for RBCs and 13.4% for WBCs, and within one grade difference at 67.2% and 74.1%, respectively. Additional analyses using the intraclass correlation coefficient and Bland-Altman plots confirmed that the novel protocol exhibited superior agreement compared to the other three manual microscopy methods tested. Therefore, we recommend the novel protocol as a standardized procedure for urine sediment preparation, given its high correlation and agreement with the standardized chamber method.

Report on the improvement of the in vitro and specimen reception environment system (핵의학과 검체 접수 환경시스템의 개선사례 보고)

  • Kim, Jung In;Kang, Mi Ji;Kim, Na Kyung;Park, Ji Sol;Kwon, Won Hyun;Lee, Kyung Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • Purpose Sample reception environment system in nuclear medicine has not changed much compared to 20 years ago. When preparing sample for in vitro test, there was no significant change because the test was carried out by generating an own specimen from the parent specimen. In this study, We would like to introduce a method that automatically removes the sample cap using the automated decapper equipment and enables automatic reception at the same time. In addition, including a provisional reception system. Materials and Methods In 2019, it was intended to get a device that automatically removes the cap of a patient's blood sample. This equipment is the same as the equipment used in the Department of Laboratory Medicine (Vacuette Ⓡ Unicap Belt Decapper, Greiner bio-one, Austria). However, the purchase was delayed due to differences in tube size, budget, and space. In January 2020, we borrowed domestic automatic decapper equipment and modified it to suit our laboratory environment. After 9 months, we were able to introduce a system that automatically removes the lid of a patient's blood sample and at the same time automatically accepts the test. And, through the provisional reception system, it was possible to know the arrival of the specimen in a short time. Results With the use of an automatic decapper device, the sample cap was automatically removed, and the reception proceeded at the same time. So, it was very efficient at work because it shortened the sample preparation time by about 20 minutes. In addition, it was possible to prevent the examiner's musculoskeletal disorders caused by repeated wrist use. After using the provisional reception system, patients were able to be discharged quickly, and the number of phone calls to confirm the arrival of samples was reduced. Conclusion Most hospitals have about four employees in the nuclear medicine in vitro laboratory. It is effective to use automatic decapper equipment and a provisional reception system for organizations that perform work with the minimum number of personnel.

Development and evaluation of standard samples for quality control of automated total bacterial counter in raw milk (원유 세균수 검사장비의 정도관리를 위한 표준시료의 개발 및 평가)

  • Kang, Hye Jeong;Kim, Jin Hwan;Byun, Yeong Seob;Lee, Hana;Lee, Hye Young;Kim, Jihyeon;Hong, Serim;Kim, Ha-Young;Yoon, Soon-Seek;Moon, Jin-San
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.3
    • /
    • pp.147-154
    • /
    • 2020
  • Standard samples were prepared for this study, and applied for BactoScanTM and BactoCountTM in order for quality control evaluation for total bacterial count in raw milk. Accordingly, the preparation of two lots of standard samples for quality control were lyophilized, which contain Lactobacillus lactis. The standard samples were prepared into three different levels of bacterial counts, those were Low 30,000~40,000, Medium 70,000~90,000, High 150,000~220,000 CFU/mL, respectively. Then, the proficiency tests were performed in total 19 laboratories for measuring total bacterial counts. The total bacterial counts in the standard samples showed 37~42, 82~105, 214~240 CFU/mL in the first lot, and it showed 30~36, 67~75, 131~163 CFU/mL in the second lot in low, medium and high levels, respectively. Based on these results, the absolute values of z-scores of six standard samples in 18 laboratories were ≤2, which means the samples are satisfactory. However, z-score in one laboratory was ≤3, which means the sample is questionable. Using two standard samples, the correlation between BactoScanTM and BactoCountTM was 0.9982, which means the results of total bacterial count measurement of both equipment were equivalent. Therefore, the standard samples manufactured in this study for quality control of total bacterial count using BactoScanTM and BactoCountTM in the raw milk could be applied to proficiency tests.