• 제목/요약/키워드: Automated Driving Vehicles

검색결과 89건 처리시간 0.021초

A study on the Evaluation of Real-Time Map Update Technology for Automated Driving (자율주행 지원을 위한 정밀도로지도 갱신기술 평가를 위한 기준 도출 연구)

  • PARK, Yu-Kyung;KANG, Won-Pyung;CHOI, Ji-Eun;KIM, Byung-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제22권3호
    • /
    • pp.146-154
    • /
    • 2019
  • Recently, a system has been developed and applied to establish and utilize HD maps through R&D. The biggest problem, however, is the lack of a proper HD map update system, which requires the development and adoption of such a system as soon as possible. In addition, in the case of updating HD maps for automated driving, integrity and accuracy of maps are required for safe driving, so an test of these technologies and data quality is required. In April 2018, the Ministry of Land, Infrastructure and Transport implemented a project to 'Develop Technology to Demonstrate and Share the Instant Road Change Detection and Update Technology for automated driving. This paper analyzed the technology for updating map based on the investigation and analysis of relevant technology trends for the development of integrated demonstration and sharing technology of road change rapid detection and updating map technology, and put forward the criteria for road change rapid detection, integrated quality verification of update technology. It is expected that the results of this study will contribute to quality assurance of HD maps that support safety driving for automated vehicles.

A Study of Symmetry in Speed of Two Identical Vehicles in a Frontal Oblique Crash (동일 차량간 충돌 시 차량간 속도 대칭성 연구)

  • Myeonggyu, An;Ho, Kim;Young Myung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • 제14권4호
    • /
    • pp.100-105
    • /
    • 2022
  • Oblique car to car frontal impact is quite common on the road and series of studies have been done to realize this in the lab. At a certain angle of oblique crash a car (ego) is to travel at a speed of xkm/h to hit the other car(traffic) which is approaching to ego at a speed of ykm/h. Symmetry of the speed of two vehicles, x vs. y, is studied with respect to the impulse of the ego vehicle as well as occupant injury. If there is symmetry of speed of two vehicles, number of case studies needed to analyze the oblique frontal impact may decrease: ex. in the case of 30degree oblique crash 40km/h (ego) / 80km/h (traffic) will show the similar behavior as 80km/h (ego) / 40km/h (traffic) crash.

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • 제10권1호
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

Study on the Development of K-City Roadmap through the Standard Analysis of the Test-Bed for Automated Vehicles in China (중국 자율주행차 테스트베드 관련 표준 분석을 통한 K-City 고도화 방안 수립에 관한 연구)

  • Lee, Sanghyun;Ko, Hangeom;Lee, Hyunewoo;Cho, Seongwoo;Yun, Ilsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • 제14권1호
    • /
    • pp.6-13
    • /
    • 2022
  • The Ministry of Land, Infrastructure and Transport (MoLIT) and the Korean Automobile Testing and Research Institute (KATRI) are supporting the development of Lv.3 automated vehicle (hereinafter, AV) technology by constructing an automated driving pilot city (as known as K-City) equipped with total 5 evaluation environments (urban, motorway, suburban, community road, and autonomous parking facility) which is a test bed exclusively for AV (2017~2018). An upgrade project is in a progress to materialize harsh environments such as bad weather (rain, fog, etc.) and reproduction of communication jamming (GPS blocking, etc.) with the purpose of supporting the development of Lv.4 connected & automated vehicle (hereinafter, CAV) technology (2019~2022). We intend to proactively establish a national level standard for CAV test-bed and test road requirements, test method, etc. for establishment of a road map for the construction of the test bed which is being promoted step by step and analyze and, when required, benchmark the case of China that has announced and is utilizing it. Through this, we plan to define standardized requirements (evaluation facility, evaluation system, etc.) on the test bed for the development of Lv.4/4+ CAV technology and utilize the same for the design and construction of a test bed, establishment of a road map for the construction of a real car-based test environment related to the support for autonomous driving service substantiation, etc. through provision of an evaluation environment utilizing K-City, and the establishment of a K-City upgrade strategies, etc.

A Study on the Method for Managing Hazard Factors to Support Operation of Automated Driving Vehicles on Road Infrastructure (자율주행시스템 운행지원을 위한 도로 인프라 측면의 위험 요소 관리 방안)

  • Kim, Kyuok;Choi, Jung Min;Cho, Sun A
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제21권2호
    • /
    • pp.62-73
    • /
    • 2022
  • As the competition among the autonomous vehicle (AV, here after) developers are getting fierce, Korean government has been supporting developers by deregulating safety standards and providing financial subsidies. Recently, some OEMs announced their plans to market Lv3 and Lv4 automated driving systems. However, these market changes raised concern among public road management sectors for monitoring road conditions and alleviating hazardous conditions for AVs and human drivers. In this regards, the authors proposed a methodology for monitoring road infrastructure to identify hazardous factors for AVs and categorizing the hazards based on their level of impact. To evaluate the degrees of the harm on AVs, the authors suggested a methodology for managing road hazard factors based on vehicle performance features including vehicle body, sensors, and algorithms. Furthermore, they proposed a method providing AVs and road management authorities with potential risk information on road by delivering them on the monitoring map with node and link structure.

Artificial Potential Function for Driving a Road with Traffic Light (신호등 신호에 따른 차량 주행 제어를 위한 인공 전위 함수)

  • Kim, Duksu
    • Journal of KIISE
    • /
    • 제42권10호
    • /
    • pp.1231-1238
    • /
    • 2015
  • Traffic light rules are one among the most common and important safety rules as the directly correlate with the safety of pedestrians. Consequently, an algorithm is required to cause an automated (or semi-automated) vehicle to observe traffic light signals. We present a novel, artificial potential function to guide an automated vehicle through traffic lights. Our function consists of three potential function components representing the three traffic light colors: green, yellow, and red. The traffic light potential function smoothly changes an artificial potential field using the elapsed time for the current light and light conversion. Our traffic light potential function is combined with other potential functions to guide vehicles' movement and constructs the final artificial potential field. Using various simulations, we found or method successfully guided the vehicle to observe traffic lights while behaving like human-controlled cars.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제22권5호
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

A Study on the Priority of Autonomous Driving Service Requirements for the Transportation Vulnerable: Focusing on Wheelchair disabled and Walking disabled Persons (교통약자 자율주행서비스 요구사항에 대한 우선순위 연구: 휠체어 이용 장애인 및 보행 장애인을 중심으로)

  • Seok Hyun Kim;Jeong Ah Jang;Yu Mi Do;Hyun Keun Hong
    • Journal of Information Technology Applications and Management
    • /
    • 제31권3호
    • /
    • pp.39-52
    • /
    • 2024
  • The development of autonomous driving technology is expected to bring about a major change in the mobility rights of the transportation vulnerable. It is very important to identify user requirements in developing autonomous vehicles and service technologies for the transportation vulnerable. User requirements were derived for the wheelchair disabled and the walking disabled. Through focus interviews, a total of 58 requirements were derived for wheelchair-using disabled people and 53 requirements for walking disabled people. A Kano survey was conducted on 33 wheelchair disabled and 34 walking disabled. After that, the quality types of functional requirements in terms of autonomous vehicles and service environment development were analyzed using the Kano model. Priority analysis was conducted on the functions required by the wheelchair disabled and the walking disabled. The results of this study can be used as basic data to determine the priorities of user function requirements in the early stages of autonomous vehicle and service technology development.

Model-Free Longitudinal Acceleration Controller Design and Implementation Quickly and Easily Applicable for Different Control Interfaces of Automated Vehicles Considering Unknown Disturbances (자율 주행 제어 인터페이스에 강건하며 빠르고 쉽게 적용 가능한 모델 독립식 종 방향 가속도 제어기 개발 및 성능 검증)

  • Seo, Dabin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • 제13권4호
    • /
    • pp.39-52
    • /
    • 2021
  • This paper presents a longitudinal acceleration controller that can be applied to real vehicles (nonlinear and time-varing systems) with only a simple experiment regardless of the type of vehicle and the control interface structure. The controller consists of a feedforward term for fast response, a zero-throttle acceleration compensation term, and a feedback term (P gain) to compensate for errors in the feedforward term, and another feedback term (I gain) to respond to disturbances such as slope. In order to easily apply it to real vehicles, there are only two tuning parameters, feedforward terms of throttle and brake control. And the remaining parameters can be calculated immediately when the two parameters are decided. The tuning procedure is also unified so that it can be quickly and easily applied to various vehicles. The performance of the controller was evaluated using MATLAB/Simulink and Truksim's European Ben model. In addition, the controller was successfully implemented to 3 medium-sized vehicle (HMC Solati), which is composed of different control interface characteristic. Vehicle driving performance was evaluated on the test track and on the urban roads in Siheung and Seoul.

Comparison of Severity of Occupant Injuries due to Different Airbag TTF with Occupant's Abnormal Seating Conditions while Driving an Automated Driving Vehicle (자율주행자동차에서 비정상 착석상태로 운전 시 에어백 작동시간(TTF)에 따른 승객 상해도 비교)

  • Park, Jiyang;Youn, Younghan
    • Journal of Auto-vehicle Safety Association
    • /
    • 제11권3호
    • /
    • pp.13-18
    • /
    • 2019
  • According to the development of autonomous vehicles worldwide, the driver's posture may not be a normal posture but the various seating positions. Recently, a numbers of research activities has been focused to protect of driver and passengers in various seating positions as well as seating postures. In this paper, the occupant injury severity was evaluated with different seat positions, seatback angles and TTF times.