• Title/Summary/Keyword: Automated Diagnosis

Search Result 171, Processing Time 0.03 seconds

Diagnosing a Child with Autism using Artificial Intelligence

  • Alharbi, Abdulrahman;Alyami, Hadi;Alenzi, Saleh;Alharbi, Saud;bassfar, Zaid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.145-156
    • /
    • 2022
  • Children are the foundation and future of this society and understanding their impressions and behaviors is very important and the child's behavioral problems are a burden on the family and society as well as have a bad impact on the development of the child, and the early diagnosis of these problems helps to solve or mitigate them, and in this research project we aim to understand and know the behaviors of children, through artificial intelligence algorithms that helped solve many complex problems in an automated system, By using this technique to read and analyze the behaviors and feelings of the child by reading the features of the child's face, the movement of the child's body, the method of the child's session and nervous emotions, and by analyzing these factors we can predict the feelings and behaviors of children from grief, tension, happiness and anger as well as determine whether this child has the autism spectrum or not. The scarcity of studies and the privacy of data and its scarcity on these behaviors and feelings limited researchers in the process of analysis and training to the model presented in a set of images, videos and audio recordings that can be connected, this model results in understanding the feelings of children and their behaviors and helps doctors and specialists to understand and know these behaviors and feelings.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.

Ultrasound-guided Core Needle Biopsy in Diagnosis of Soft Tissue Masses (연부조직 종물의 진단에서 초음파 유도하 중심부 침생검)

  • Kim, Jeung-Il;Youn, Myung-Soo;Cheon, Sang-Jin;Choi, Gyung-Un;Lee, Tae-Hong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.10 no.2
    • /
    • pp.113-119
    • /
    • 2004
  • Purpose: To determine the utility of sonographically guided percutaneous core needle biopsy to diagnose musculoskeletal soft tissue masses. Methods: A prospective study was performed in 55 patients referred for image-guided needle biopsy of primary or recurrent soft tissue masses and bone lesion or suspected solitary metastasis with extraosseous masses. Tissue samples were obtained with a 14-gauge or 18-gauge cutting needle coupled to an automated biopsy device under local anesthesia and sonographic guidance. Statistical analysis was based on 49 biopsies confirmed by successful clinical treatment (11 cases) or surgical resection (38 cases). Results: An accurate diagnosis was obtained in 47 (97%) of 49 biopsies; sensitivity was 95%, and specificity was 100%. The method did not yield sufficient tissue to establish a diagnosis in 6 cases. Considering all 55 biopsies, high-quality specimens were obtained in 87%. There were no serious complications. Conclusions: Sonographically guided core needle biopsy is accurate and safe, in soft tissue masses and bone tumors with extraosseous masses in the appendicular skeleton. In such patients, the sonographically guided procedure is the most prompt and effective method for obtaining tissue samples.

  • PDF

Classification of Very High Concerns HRCT Images using Extended Bayesian Networks (확장 베이지안망을 적용한 고위험성 HRCT 영상 분류)

  • Lim, Chae-Gyun;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Recently the medical field to efficiently process the vast amounts of information to decision trees, neural networks, Bayesian Networks, including the application method of various data mining techniques are investigated. In addition, the basic personal information or patient history, family history, in addition to information such as MRI, HRCT images and additional information to collect and leverage in the diagnosis of disease, improved diagnostic accuracy is to promote a common status. But in real world situations that affect the results much because of the variable exists for a particular data mining techniques to obtain information through the enemy can be seen fairly limited. Medical images were taken as well as a minor can not give a positive impact on the diagnosis, but the proportion increased subjective judgments by the automated system is to deal with difficult issues. As a result of a complex reality, the situation is more advantageous to deal with the relative probability of the multivariate model based on Bayesian network, or TAN in the K2 search algorithm improves due to expansion model has been proposed. At this point, depending on the type of search algorithm applied significantly influenced the performance characteristics of the extended Bayesian network, the performance and suitability of each technique for evaluation of the facts is required. In this paper, we extend the Bayesian network for diagnosis of diseases using the same data were carried out, K2, TAN and changes in search algorithms such as classification accuracy was measured. In the 10-fold cross-validation experiment was performed to compare the performance evaluation based on the analysis and the onset of high-risk classification for patients with HRCT images could be possible to identify high-risk data.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

Diagnostic Performance of Combined Single Photon Emission Computed Tomographic Scintimammography and Ultrasonography Based on Computer-Aided Diagnosis for Breast Cancer (유방 SPECT 및 초음파 컴퓨터진단시스템 결합의 유방암 진단성능)

  • Hwang, Kyung-Hoon;Lee, Jun-Gu;Kim, Jong-Hyo;Lee, Hyung-Ji;Om, Kyong-Sik;Lee, Byeong-Il;Choi, Duck-Joo;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2007
  • Purpose: We investigated whether the diagnostic performance of SPECT scintimammography (SMM) can be improved by adding computer-aided diagnosis (CAD) of ultrasonography (US). Materials and methods: We reviewed breast SPECT SMM images and corresponding US images from 40 patients with breast masses (21 malignant and 19 benign tumors). The quantitative data of SPECT SMM were obtained as the uptake ratio of lesion to contralateral normal breast. The morphologic features of the breast lesions on US were extracted and quantitated using the automated CAD software program. The diagnostic performance of SPECT SMM and CAD of US alone was determined using receiver operating characteristic (ROC) curve analysis. The best discriminating parameter (D-value) combining SPECT SMM and the CAD of US was created. The sensitivity, specificity and accuracy of combined two diagnostic modalities were compared to those of a single one. Results: Both SPECT SMM and CAD of US showed a relatively good diagnostic performance (area under curve = 0.846 and 0.831, respectively). Combining the results of SPECT SMM and CAD of US resulted in improved diagnostic performance (area under curve =0.860), but there was no statistical differerence in sensitivity, specificity and accuracy between the combined method and a single modality. Conclusion: It seems that combining the results of SPECT SMM and CAD of breast US do not significantly improve the diagnostic performance for diagnosis of breast cancer, compared with that of SPECT SMM alone. However, SPECT SMM and CAD of US may complement each other in differential diagnosis of breast cancer.

Development and Assesment of an Embedded Portable A-ABR System (임베디드 기반의 휴대용 A-ABR 시스템 개발 및 평가)

  • Noh, Hyung-Wook;Nam, Ki-Chang;Jang, Kyung-Hwan;Cha, Eun-Jong;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.48-55
    • /
    • 2010
  • Hearing impairment is one of the most common birth defects among infants. Significant bilateral hearing impairment have profound effects on speech and language development. But it can be prevented, if a hearing impairment is identified and treated in its early stage. ABR (auditory brainstem response) is useful screening tool for new born hearing test. However, the interpretation of conventional ABR should be done by a experienced audiologist and testing takes some time. Therefore, A-ABR(automated ABR) which detect ABR peak automatically have been developed recently. In contrast to A-ABR researches became active in overseas, there has been little study in Korea. In this study, we have developed a portable A-ABR system based on the results of our previous study. For the evaluation of the developed system, the clinical trials were performed on adults and infants. As a results, it showed good sensitivity (94.4%) and specificity (92.2%), and accuracy (93.0%) between clinical diagnosis and the developed A-ABR test.

Modified Classification of Anemia by ROW (RDW를 이용한 빈혈의 재분류)

  • Hwang, Hyeong-Ki;Hyun, Myung-Soo;Shim, Bong-Sup
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.1
    • /
    • pp.58-67
    • /
    • 1993
  • The author obtained index of red cell volume distribution width(RDW) and other red cell indices in 210 patients of various hematoncologic conditions and 200 healthy control group using, an automated blood analyzer, Coulter Counter Model S-plus II. This study performed to classify various etiologic anemia based on the MCV and RDW, to evaluate availability to the differential diagnosis in korean anemic distoders somewhat different from etiologies of anemias in foreginers. In the most of cases, the increase or decrease of MCV were always combined the pararell changes of MCH and MCHC. But the values of MCV and RDW were not correlated in control group and patient group. So the terms of heterogenous of homogenous anemia were meaningful morphologic classification than hypochromic or normochromic anemia. The heterogenous microcytic anemia contained iron deficiency anemia. In heterogenous normocytic anemia, myelophthisic anemia, acute leukemia were contained. In heterogenous macrocytic anemia, megaloblastic anemia, hemolytic anemia were contained. The homogenous microcytic anemia was observed in anemia of chronic disorders. In homogenous normocytic anemia, acute blood loss, chronic leukemia, multiple myeloma were contained. The aplastic anemia was belonged to homogenous macrocytic anemia. The diagnostic significance of RDW in hemoglobinopathies is most important. But this study was not contained hemoglobinopathies. Instead RDW was very helpful to differential diagnosis of most common anemias, iron deficiency anemia and anemia due to chronic disorders in Korea.

  • PDF

FMD response cow hooves and temperature detection algorithm using a thermal imaging camera (열화상 카메라를 이용한 구제역 대응 소 발굽 온도 검출 알고리즘 개발)

  • Yu, Chan-Ju;Kim, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.292-301
    • /
    • 2016
  • Because damages arising from the occurrence of foot-and-mouth disease (FMD) are very great, it is essential to make a preemptive diagnosis to cope with it in order to minimize those damages. The main symptoms of foot-and-mouth disease are body temperature increase, loss of appetite, formation of blisters in the mouth, on hooves and breasts, etc. in a cow or a bull, among which the body temperature check is the easiest and quickest way to detect the disease. In this paper, an algorithm to detect FMD from the hooves of cattle was developed and implemented for preemptive coping with foot-and-mouth disease, and a hoof check test is conducted after the installation of a high-resolution camera module, a thermo-graphic camera, and a temperature/humidity module in the cattle shed. Through the algorithm and system developed in this study, it is possible to cope with an early-stage situation in which cattle are suspected as suffering from foot-and-mouth disease, creating an optimized growth environment for cattle. In particular, in this study, the system to cope with FMD does not use a portable thermo-graphic camera, but a fixed camera attached to the cattle shed. It does not need additional personnel, has a function to measure the temperature of cattle hooves automatically through an image algorithm, and includes an automated alarm for a smart phone. This system enables the prediction of a possible occurrence of foot-and-mouth disease on a real-time basis, and also enables initial-stage disinfection to be performed to cope with the disease without needing extra personnel.