• Title/Summary/Keyword: Automated Detection

Search Result 584, Processing Time 0.02 seconds

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

The Effectiveness of Visual Field C10-2 in the Early Detection of Glaucoma with Parafoveal Scotoma (중심부 시야결손을 보이는 초기 녹내장 환자의 진단에서 자동시야계 C10-2의 유용성)

  • Hwang, Bo Een;Park, Hae-Young Lopilly;Park, Chan Kee
    • Journal of The Korean Ophthalmological Society
    • /
    • v.58 no.3
    • /
    • pp.321-326
    • /
    • 2017
  • Purpose To identify the correspondence between the central sensitivity of several visual field (VF) tests and ganglion cell inner plexiform layer (GC-IPL) thickness in early glaucoma patients with parafoveal scotoma. Methods Fifty-seven eyes from 57 patients with glaucomatous optic neuropathy and parafoveal scotoma were analyzed using the standard automated perimetry (SAP) C10-2 test, the SAP C24-2 test, and the frequency doubling technology perimetry (FDT) C24-2 test. The correlation between the VF central sensitivity and the GC-IPL thickness from macular scans via optical coherence tomography was analyzed. Results The central sensitivity was $27.51{\pm}5.43dB$, $27.39{\pm}5.05dB$, and $22.09{\pm}5.08dB$ for SAP C24-2, SAP C10-2, and FDT C24-2, respectively. Mean GC-IPL thickness was $70.2{\pm}8.5{\mu}m$. Using regression analysis, the value of log $R^2$ between the logarithmic central sensitivity and GC-IPL thickness was 0.498, and the linear $R^2$ between the antilogarithmic central sensitivity and GC-IPL thickness in SAP C10-2 was 0.486, and both were statistically significant (p < 0.05). This relationship was stronger in early glaucoma patients compared to late glaucoma patients using SAP C10-2. Conclusions The structure-function relationship between GC-IPL thickness and central sensitivity was better with SAP C10-2, especially in early glaucoma patients, compared to other VF modalities.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department (핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석)

  • Chae, Hong Joo;Cheon, Jun Hong;Lee, Sun Ho;Yoo, So Yeon;Yoo, Seon Hee;Park, Ji Hye;Lim, Soo Yeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose In in-vitro laboratories of nuclear medicine department, when the reagent lot or reagent lot changes Comparability test or parallel test is performed to determine whether the results between lots are reliable. The most commonly used standard domestic laboratories is to obtain %difference from the difference in results between two lots of reagents, and then many laboratories are set the standard to less than 20% at low concentrations and less than 10% at medium and high concentrations. If the range is deviated from the standard, the test is considered failed and it is repeated until the result falls within the standard range. In this study, several tests are selected that are performed in nuclear medicine in-vitro laboratories to analyze parallel test results and to establish criteria for customized percent difference for each test. Materials and Methods From January to November 2018, the result of parallel test for reagent lot change is analyzed for 7 items including thyroid-stimulating hormone (TSH), free thyroxine (FT4), carcinoembryonic antigen (CEA), CA-125, prostate-specific antigen (PSA), HBs-Ab and Insulin. The RIA-MAT 280 system which adopted the principle of IRMA is used for TSH, FT4, CEA, CA-125 and PSA. TECAN automated dispensing equipment and GAMMA-10 is used to measure insulin test. For the test of HBs-Ab, HAMILTON automated dispensing equipment and Cobra Gamma ray measuring instrument are used. Separate reagent, customized calibrator and quality control materials are used in this experiment. Results 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(middle concentration) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [10.0 / 4.2 / 3.9 / 0.0] C-2(high concentration) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 4.3 / 4.3 / 0.3] C-2(high concentration) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(low concentration) [9.8 / 4.2 / 3.0 / 0.0] C-2(middle concentration) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [15.4 / 7.6 / 8.2 / 0.0] C-2(middle concentration) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 3.7 / 2.7 / 0.2] C-2(high concentration) [8.9 / 4.1 / 3.6 / 0.3] 7. Insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [8.7 / 3.1 / 2.4 / 0.9] C-2(high concentration) [8.3 / 3.2 / 1.5 / 0.1] In some low concentration measurements, the percent difference is found above 10 to nearly 15 percent in result of target value calculated at a lower concentration. In addition, when the value is measured after Standard level 6, which is the highest value of reagents in the dispensing sequence, the result would have been affected by a hook effect. Overall, there was no significant difference in lot change of quality control material (p-value>0.05). Conclusion Variations between reagent lots are not large in immunoradiometric assays. It is likely that this is due to the selection of items that have relatively high detection rate in the immunoradiometric method and several remeasurements. In most test results, the difference was less than 10 percent, which was within the standard range. TSH control level 1 and PSA control level 1, which have low concentration target value, exceeded 10 percent more than twice, but it did not result in a value that was near 20 percent. As a result, it is required to perform a longer period of observation for more homogenized average results and to obtain laboratory-specific acceptance criteria for each item. Also, it is advised to study observations considering various variables.