• Title/Summary/Keyword: Autohydrogenotrophic denitrification

Search Result 2, Processing Time 0.018 seconds

Autohydrogenotrophic Denitrification of High Nitrate Concentration in a Glass Bead Biofilm Reactor (바이오필름 반응기상에서 수소 이용성 독립영양생물을 이용한 고농도 탈질 반응)

  • Park, Ho Il;Kim, Ji Seong;Kim, Dong Kun;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Autohydrogenotrophic denitrification of high nitrate concentration contaminated wastewater in a batch-scale biofilm reactor has been investigated. High nitrate concentration decreased as pH increased from 7.01 to 9.45. The high nitrate concentrations continuously decrease from $150mg.l^{-1}$ to $0mg.l^{-1}$. Nitrite concentrations increase at about two-thirds way through the denitrification process and thereafter it decreases with time. Autohydrogenotrophic denitrification of high nitrate concentration is passible to use drinking water as well as wastewater, and to deal with wastewater treatment by hetrotrophic denitrification.

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification

  • Shin, Jung-Hun;Kim, Byung-Chun;Choi, Okkyoung;Kim, Hyunook;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1670-1679
    • /
    • 2015
  • Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.