• Title/Summary/Keyword: Autogenous Shrinkage

Search Result 174, Processing Time 0.022 seconds

A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste (저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구)

  • Hyeon, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF

Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes

  • Park Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.853-856
    • /
    • 2005
  • A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and $60^{\circ}C$. The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.

Autogenous Shrinkage of High Strength Mortar According to the Curing Temperature Variation (양생온도 변화에 따른 고강도 모르터의 자기수축 특성)

  • Song, Ri-Fan;Lee, Il-Sun;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • This study, by analyzing autogenous shrinkage of high-strength mortar according to changes of curing temperature, examined whether or not predictive autogenous shrinkage by an accumulated temperature method can be calculated. As a result, it could be known that dependency of autogenous shrinkage on temperature can be examined, but the autogenous shrinkage amount according to accumulated temperature was similar before and after the early $100 ^{\circ}D{\cdot}D$ and, after that, the difference in shrinkage amount by curing temperature was large.

  • PDF

A Study on the Reduction of Autogenous Shrinkage of Hgh-Strength Concrete using Bean Oil (콩기름을 사용한 고강도 콘크리트의 자기수축 특성 분석에 관한 연구)

  • Song, Ri-Fan;Hong, Seak-Min;Lee, Chung-Sub;Lim, Choon-Goun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.101-105
    • /
    • 2009
  • The purpose of this study is to reduce autogenous shrinkage of high-strength concrete. Previous studies were investigated to measure the effects of reductions to autogenous shrinkage when applying bean oil to concrete. The results of the study showed that as the mixture rate of BO increased, fluidity decreased and air quantity decreased slightly. In early age, compressed strength increased compared to Plain while decreased in long-term age. As an autogenous shrinkage characteristic, reduction effect increased according to increase in mixture rate. When mixture rate is 1%, approximately 30% decreased compared to Plain in BO. At 2%, BO decreased by about 32%. In addition, in the case of BO, autogenous shrinkage was shown to decrease compared to expansive additive and shrinkage-reducing agent.

  • PDF

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

An Experimental Study on Effect of Water-to-Binder Ratio and Admixture on Autogenous Shrinkage of Ultra High Strength Concrete (W/B와 혼화재 치환율이 초고강도 콘크리트의 자기수축에 미치는 영향에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Ji-Won;Sohn, Yu-Shin;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.13-16
    • /
    • 2006
  • This paper investigates the shrinkage behavior of Ultra High Strength(UHSC) having three water-to-cementitious material ratio, 0.20, 0.16, 0.12. All of mixtures have same design compressive strength. Free shrinkage test for autogenous and drying shrinkage using $100{\times}100{\times}400$ prismatic specimen was conducted. On all mixture, Effects of fly ash and blast-furnace slag on each shrinkage test results were also investigated. The largest portion of autogenous shrinkage was observed in UHSC12 (w/b=0.12) and the measured strain was as high as 80% of the total drying shrinkage strain. The autogenous shrinkage of UHSC decreased as the amount of fly ash increased as demonstrated in the literature. However, the results of the effect of blast-furnace slag on autogenous shrinkage were somewhat different from previous researches.

  • PDF

The Evaluation of Properties on Autogenous Shrinkage and Dry Shrinkage of High Strength Concrete (고강도 콘크리트의 자기수축 및 건조수축특성 평가)

  • Lee, Woong-Jong;Um, Tae-Sun;Lee, Jong-Ryul;Makoto, Tanimura
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.485-488
    • /
    • 2006
  • The shrinkage properties of the high strength concrete using the cement of Type I, Type III and Type IV was examined, and the following results were obtained. (1) Consideration of the autogenous shrinkage when evaluating appropriately the shrinkage properties of the high strength concrete is indispensable. (2) The autogenous shrinkage prediction expression of JSCE can estimate the properties of autogenous shrinkage of the cement made from korea with in general sufficient accuracy. (3) It is necessary to advance examination which used Korean aggregate about dry shrinkage from now on, and to attain highly accuracy of the autogenous shrinkage prediction expression.

  • PDF

Prediction of Autogenous Shrinkage on Concrete by Unsaturated Pore Compensation Hydration Model (불포화 공극 보정 수화도 모델을 이용한 콘크리트의 자기수축 예측)

  • Lee, Chang Soo;Park, Jong Hyok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.909-915
    • /
    • 2006
  • To predict autogenous shrinkage of concrete, unsaturated pore compensation factor could be calculated by experiments of autogenous shrinkage of cement paste on the assumption that the differences between degree of hydration and strain rate of autogenous shrinkage are unsaturated pore formation rate. Applying unsaturated pore compensation factor on modified Pickket model considering contribution factor and non-contribution factor to autogenous shrinkage of concrete, experimental data and existing model were compared. From the results modified Pickket model was verified to present similar tendency between Tazawa model and experimental data, but CEB-FIP model might be corrected because this model uses ultimate autogenous shrinkage underestimated and the same autogenous time function of concrete material properties considering only compressive strength.

An Experimental Study on Shrinkage of High Strength Concrete with Mineral Admixture (혼화재 사용에 따른 고강도 콘크리트의 수축에 관한 실험적 연구)

  • Lee, Young-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • The effects of additive and shrinkage reducing agent on the drying and autogenous shrinkage of high strength concrete are investigated in this study. As results, when the ratio of W/B(low water to binder ratio) increase, the compressive strength is decreased. Comparing with PC(portland cement) concrete, the strength is 2.8%, 3.2% and 3.8% lower respectively than that of PC when concrete mixing ratio is 0.2%, 0.3% and 0.4% in 28 days curing. Drying shrinkage strain of PC concrete showed $-650{\times}10^{-6}$ in 91 days curing. When SR(shrinkage reducing agent) of 0.2%, 0.3% and 0.4% is mixed, the drying shrinkage strains are 21%, 34% and 41% lower than those of PC in 91 days curing. Autogenous shrinkage strain of PC concrete appeared $-480{\times}10^{-6}$ in 56 days curing. When SR of 0.2%, 0.3% and 0.4% is mixed, the autogenous drying shrinkage strain are 12.5%, 19.8% and 33.3% lower than those of PC in 56 days curing. In cases of using the mineral and shrinkage agent or only using a shrinkage reducing agent also appeared same reducing effects for drying shrinkage and autogenous shrinkage.

  • PDF

Autogenous and Drying Shrinkage Behavior of Ultra-High-Strength Concrete at Early Ages (설계강도 120MPa 초고강도 콘크리트의 초기재령 자기수축 특성 연구)

  • Kim Ji Won;Sohn Yu Shin;Lee Joo Ha;Kim Gyu Dong;Lee Seung Hoon;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.293-296
    • /
    • 2004
  • In this study, to investigate autogenous shrinkage behavior of 120MPa UHSC at early ages, free and restrained shrinkage tests are performed for various strength levels(50MPa, 80MPa, 120MPa). For 120MPa, the effect of fly ash on autogenous shrinkage was also investigated. In order to assess the potential for early-age cracking in concrete and a mixtures susceptibility to shrinkage cracking, restrained ring test was carried out. Test results show that autogenous shrinkage of UHSC was much higher than that of HSC, VHSC and fly ash delayed cracking age in UHSC by decreasing autogenous shrinkage.

  • PDF