• Title/Summary/Keyword: Auto-Calibration

Search Result 119, Processing Time 0.024 seconds

Analysis of the Characteristics for Quadrature Receivers Adopting an Auto-Calibration Method (자동 보정 기능을 가진 직교 위상 수신기의 특성 해석)

  • Kwon, Soon-Man;Kim, Seog-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.100-106
    • /
    • 2009
  • This paper deals with an estimation problem of the gain and phase imbalances between the in-phase and quadrature components in the quadrature receivers which are widely used in wireless communications. It is shown that the estimates derived from the suggested auto-calibration algorithm is asymptotically minimum-variance unbiased as a function of the sampling time. In order to show this characteristic, the probability density functions of the estimates for the gain and phase imbalances are derived first. Then the mean and variance functions are investigated analytically or numerically based on the density functions.

Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses

  • Choi, Jung Seok;Kwon, Ki Mun;Lee, Young Kyu;Joeng, Jang Uk;Lee, Kyung Ok;Jin, Sang Keun;Choi, Yang Il;Lee, Jae Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1670-1676
    • /
    • 2018
  • Objective: This study was conducted to enable on-line prediction of primal and commercial cut weights in Korean slaughter pigs by AutoFom III, which non-invasively scans pig carcasses early after slaughter using ultrasonic sensors. Methods: A total of 162 Landrace, Yorkshire, and Duroc (LYD) pigs and 154 LYD pigs representing the yearly Korean slaughter distribution were included in the calibration and validation dataset, respectively. Partial least squares (PLS) models were developed for prediction of the weight of deboned shoulder blade, shoulder picnic, belly, loin, and ham. In addition, AutoFom III's ability to predict the weight of the commercial cuts of spare rib, jowl, false lean, back rib, diaphragm, and tenderloin was investigated. Each cut was manually prepared by local butchers and then recorded. Results: The cross-validated prediction accuracy ($R^2cv$) of the calibration models for deboned shoulder blade, shoulder picnic, loin, belly, and ham ranged from 0.77 to 0.86. The $R^2cv$ for tenderloin, spare rib, diaphragm, false lean, jowl, and back rib ranged from 0.34 to 0.62. Because the $R^2cv$ of the latter commercial cuts were less than 0.65, AutoFom III was less accurate for the prediction of those cuts. The root mean squares error of cross validation calibration (RMSECV) model was comparable to the root mean squares error of prediction (RMSEP), although the RMSECV was numerically higher than RMSEP for the deboned shoulder blade and belly. Conclusion: AutoFom III predicts the weight of deboned shoulder blade, shoulder picnic, loin, belly, and ham with high accuracy, and is a suitable process analytical tool for sorting pork primals in Korea. However, AutoFom III's prediction of smaller commercial Korean cuts is less accurate, which may be attributed to the lack of anatomical reference points and the lack of a good correlation between the scanned area of the carcass and those traits.

Novel Calibration Method for the Multi-Camera Measurement System

  • Wang, Xinlei
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.746-752
    • /
    • 2014
  • In a multi-camera measurement system, the determination of the external parameters is one of the vital tasks, referred to as the calibration of the system. In this paper, a new geometrical calibration method, which is based on the theory of the vanishing line, is proposed. Using a planar target with three equally spaced parallel lines, the normal vector of the target plane can be confirmed easily in every camera coordinate system of the measurement system. By moving the target into more than two different positions, the rotation matrix can be determined from related theory, i.e., the expression of the same vector in different coordinate systems. Moreover, the translation matrix can be derived from the known distance between the adjacent parallel lines. In this paper, the main factors effecting the calibration are analyzed. Simulations show that the proposed method achieves robustness and accuracy. Experimental results show that the calibration can reach 1.25 mm with the range about 0.5m. Furthermore, this calibration method also can be used for auto-calibration of the multi-camera mefasurement system as the feature of parallels exists widely.

Effect of Sensitivity Variation for Mounting Methods of Accelerometer in Crash Test (충돌시험시 가속도 센서의 접착방법이 감도 변화에 미치는 영향)

  • Jang, Won-Ho;Kim, Ki-Oh;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.115-120
    • /
    • 2008
  • There are many typesof accelerometer sensor. There was mainly used high-g accelerometer to obtain data for vehicle in crash test. Accelerometer was mounted on test vehicle with mounting blocks. Test result can be influenced by condition of mounting i.e. bonding material and type of block. These influences can be evaluated to variation of sensitivity in calibration test. In this paper, Calibration test were carried out for 3 types of bonding material i.e. stud, beewax and double side tape. Other factor was taken into consideration by 3-types for mounting block. All test was conducted by sinusoidal signal vibrator up to 4500Hz. In order to investigate influence for sensitivity from different input voltage in the calibrator, the same test was repeated. Test results were compared with standard accelerometer data. Relative sensitivities and phases were showed small difference in sensitivity for bonding materials with one block, but significant one for another block and different input voltage below 1000Hz.

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

Development of auto calibration program for instruments by Excel VBA (정밀 계측기기 자동 교정을 위한 Excel VBA 프로그램 개발)

  • Cho, Hyun-Seob;Ryu, In-Ho;Jang, Sung-Whan;Rheu, Ki-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1947-1948
    • /
    • 2006
  • 본 논문에서는 컴퓨터로 정밀 계측기기들을 자동 제어하고 데이터를 측정하기 위하여 기존의 상용 프로그램을 사용하지 않고 Excel VBA(Visual Basic for Applications)를 이용하는 방법에 대하여 연구하였다. 이는 반복측정 및 통계적 수치계산 등에서 많은 장점을 지니고 있어 수많은 국가교정기관 및 일반 산업체에서 유용하게 사용될 수 있으리라 사료된다.

  • PDF

Comparative analysis of auto-calibration methods using QUAL2Kw and assessment on the water quality management alternatives for Sum River (QUAL2Kw 모형을 이용한 자동보정 방법 비교분석과 섬강의 수질관리 대안 평가)

  • Cho, Jae Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.5
    • /
    • pp.345-356
    • /
    • 2016
  • In this study, auto-calibration method for water quality model was compared and analyzed using QUAL2Kw, which can estimate the optimum parameters through the integration of genetic algorithm and QUAL2K. The QUAL2Kw was applied to the Sum River which is greatly affected by the pollution loads of Wonju city. Two auto-calibration methods were examined: single parameter application for the whole river reach and separate parameter application for each reach of multiple reaches. The analysis about CV(RMSE) and fitness of the GA show that the separate parameter auto-calibration method is better than the single parameter method in the degree of precision. Thus the separate parameter auto-calibration method is applied to the water quality modelling of this study. The calibrated QUAL2Kw was used for the three scenarios for the water quality management of the Sum River, and the water quality impact on the river was analyzed. In scenario 1, which improve the effluent water quality of Wonju WWTP, BOD and TP concentrations of the Sum River 4-1 station which is representative one of Mid-Watershed, are decreased 17.7% and 29.1%, respectively. And immediately after joining the Wonjucheon, BOD and TP concentrations are decreased 50.4% and 40.5%, respectively. In scenario 2, Wonju water supply intake is closed and multi-regional water supply, which come from other watershed except the Sum River, is provided. The Sum River water quality in scenario 2 is slightly improved as the flow of the river is increased. Immediately after joining the Wonjucheon, BOD and TP concentrations are decreased 0.18mg/L and 0.0063mg/L, respectively. In scenario 3, the water quality management alternatives of scenario 1 and 2 are planned simultaneously, the Sum River water quality is slightly more improved than scenario 1. Water quality prediction of the three scenarios indicates that effluent water quality improvement of Wonju WWTP is the most efficient alternative in water quality management of the Sum River. Particularly the Sum River water quality immediately after joining the Wonjucheon is greatly improved. When Wonju water supply intake is closed and multi-regional water supply is provided, the Sum River water quality is slightly improved.

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP (SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석)

  • Kim, Minho;Heo, Tae-Young;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

Calibration of APEX-Paddy Model using Experimental Field Data

  • Mohammad, Kamruzzaman;Hwang, Syewoon;Cho, Jaepil;Choi, Soon-Kun;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.155-155
    • /
    • 2019
  • The Agricultural Policy/Environmental eXtender (APEX) models have been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. National Academy of Agricultural Sciences, Wanju, Korea, has modified a key component of APEX application, named APEX-Paddy for simulating water quality with considering appropriate paddy management practices, such as puddling and flood irrigation management. Calibration and validation are an anticipated step before any model application. Simple techniques are essential to assess whether or not a parameter should be adjusted for calibration. However, very few study has been done to evaluate the ability of APEX-Paddy to simulate the impact of multiple management scenarios on nutrients loss. In this study, the observation data from experimental fields at Iksan in South Kora was used in calibration and evaluation process during 2013-2015. The APEX auto- calibration tool (APEX-CUTE) was used for model calibration and sensitivity analysis. Four quantitative statistics, the coefficient of determination ($R^2$),Nash-Sutcliffe(NSE),percentbias(PBIAS)androotmeansquareerror(RMSE)were used in model evaluation. In this study, the hydrological process of the modified model, APEX-Paddy, is being calibrated and tested in predicting runoff discharge rate and nutrient yield. Field-scale calibration and validation processes are described with an emphasis on essential calibration parameters and direction regarding logical sequences of calibration steps. This study helps to understand the calibration and validation way is further provided for applications of APEX-Paddy at the field scales.

  • PDF