• Title/Summary/Keyword: Auto optical inspection

Search Result 10, Processing Time 0.025 seconds

Development of Highly Accurate Inspection System for Cylindrical Aluminum Casts with Microscopic Defects

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.3-35
    • /
    • 2001
  • Developed is an optical auto-inspection system to detect some microscopic defects on the Inside surface of the hydraulic automobile brakes at the production line. A small cylindrical detection module with a solid laser source at its center has two rings of optical fibers to separately collect light reflected and scattered from the defects on the surface. The cylindrical brake part rotates with respect to the detection module that will move parallel to the rotational axis of the cylinder. Thus, the optical module can scan the whole inside surface area. The automatic detection of the defects is to compare the intensity distributions ...

  • PDF

A Hybrid Automatic Focusing Method with Gaussian Interpolation and Adaptive Step Size (가우시안보간과 적응스텝크기를 적용한 하이브리드 오토포커싱)

  • Moon, Soon Hwan;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.51-55
    • /
    • 2014
  • In this paper, an hybrid automatic focusing method has been proposed for speedy and reliable measurement and inspection in industry. It can improve reliability of focusing position by using not a focusing measure but the hybrid one that is incorporated with sobel operator and auto-correlation. Also, it can not only reduce control time of focusing position using adaptive step size, but also improve accuracy of focusing position by gaussian interpolation. Its performance is verified by experiments. It is expected that it can apply to optical system for measurement and inspection in industry fields.

Active auto-focusing of high-magnification optical microscopes (고배율 광학현미경의 초정밀 능동 자동초점방법)

  • 이호재;이상윤;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 1996
  • Optical microscopes integrated with CCD cameras are widely used for automatic inspection of precision circuit patterns fabricated on glass masks and silicon wafers. For this application it is important to position the object always is focus so that the image appears in good quality while the microscope scans the object. However, as the magnification of the microscope is taken large for fine resolution the depth of focus becomes small, often in submicron ranges, requiring special care in focusing. This study proposes a new auto-focusing method, which can be readily incorporated in existing optical configuration of microscope. This method is based on optical triangulation using a separate beam of laser and two photodiodes, eliminating focus errors caused by surface roughness and waviness. Experimental results prove that the method can produce focus error signals which are very sensitive with a resolution of 5 nm within 0.5 ${\mu}{\textrm}{m}$ accuracy.

  • PDF

Study on the upgrade reliability of inkjet droplet measurement using machine vision (머신비젼을 이용한 잉크젯 드랍 측정 시스템의 신뢰성 향상에 대한 연구)

  • Kim, Dong-Eok;Lee, Jun-Ho;Jeong, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.365-366
    • /
    • 2007
  • Micro jetting drop inspection system is essential to measuring micro drop volume. Measuring pico-liter drop volume is useful for new LCD color filter product process that is based on inkjet printing technology. To upgrade the reliability in drop measurement system, we use the auto focusing & multi drop reiteration & blurring average algorism. First of all we used standard mark for gage R&R in the vision system. Finding the most suitable threshold for multi blurring drop, is the main key of this research. Sensitivity of vision system is a standard in measuring the upgrade system level. So, suitable threshold can upgrade the performance of jetting drop inspection system.

  • PDF

In-line Critical Dimension Measurement System Development of LCD Pattern Proposed by Newly Developed Edge Detection Algorithm

  • Park, Sung-Hoon;Lee, Jeong-Ho;Pahk, Heui-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.392-398
    • /
    • 2013
  • As the essential techniques for the CD (Critical Dimension) measurement of the LCD pattern, there are various modules such as an optics design, auto-focus [1-4], and precise edge detection. Since the operation of image enhancement to improve the CD measurement repeatability, a ring type of the reflected lighting optics is devised. It has a simpler structure than the transmission light optics, but it delivers the same output. The edge detection is the most essential function of the CD measurements. The CD measurement is a vital inspection for LCDs [5-6] and semiconductors [7-8] to improve the production yield rate, there are numbers of techniques to measure the CD. So in this study, a new subpixel algorithm is developed through facet modeling, which complements the previous sub-pixel edge detection algorithm. Currently this CD measurement system is being used in LCD manufacturing systems for repeatability of less than 30 nm.

Auto-Tracking Camera Gimbal for Power Line Inspection Drone and its Field Tests on 154 kV Transmission Lines (송전선로 자동추적 카메라 짐벌 및 154 kV 송전선로 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.149-156
    • /
    • 2019
  • In the field of maintenance of power transmission lines, drones have been used for their patrol and inspection by KEPCO since 2017. This drone technology was originally developed by KEPCO Research Institute, and now workers from four regional offices of KEPCO have directly applied this technology to the drone patrol and inspection tasks. In the drone inspection system, a drone with an optical zooming camera and a thermal camera can fly automatically along the transmission lines by the ground control system developed by KEPCO Research Institute, but its camera gimbal has been remotely controlled by a field worker. Especially the drone patrol and inspection has been mainly applied for the transmission lines in the inaccessible areas such as regions with river-crossings, sea-crossings and mountains. There are often communication disruptions between the drone and its remote controller in such extreme fields of mountain areas with many barriers. This problem may cause the camera gimbal be out of control, even though the inspection drone flies along the flight path well. In addition, interference with the reception of real-time transmitted videos makes the field worker unable to operate it. To solve these problems, we have developed the auto-tracking camera gimbal system with deep learning method. The camera gimbal can track the transmission line automatically, even when the transmitted video on a remote controller is intermittently unavailable. To show the effectiveness of our camera gimbal system, its field test results will be presented in this paper.

Surface Measurement of Microstructures Using Optical Pick-up Based Scanner (광픽업 스캔 장치를 이용한 미소 구조물의 표면 측정)

  • Kim, Jae-Hyun;Park, Jung-Yul;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.73-76
    • /
    • 2010
  • The issue of inspection and characterization of microstructures has emerged as a major consideration in design, fabrication, and detection of MEMS devices. However, the conventional measurement techniques, including scanning electron microscopy (SEM) imaging, atomic force microscopy (AFM) scanning, and mechanical surface profiler, require often destructive process or may be difficult to measure with a wafer scale. In this paper, we characterize the surface profiles of microstructures using an optical scanner based on a DVD pick-up module. Scanning images of the microstructures are successfully generated using the intensity of reflected light from different depths of the surface profiles, based on the focus error signal (FES) from photodiodes. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and low cost, compared to conventional measurement techniques.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

Method of PCB Short Circuit Detection using SURF (SURF를 이용한 PCB 쇼트-서킷 검출 방법)

  • Hwang, Dae-Dong;Shin, Si-Woo;Lee, Keun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5471-5478
    • /
    • 2012
  • In this paper, we propose a new short-circuit detecting method which can detect bad short-circuits, one of bad types occurring in PCB(Printed Circuit Board), by using SURF(Speeded-Up Robust Features) algorithm. The basic procedure in the proposed method sequentially consists of extracting features from both sample and inputted images by SURF, performing perspective transform by feature matching and matching results, extracting check areas of interest, binary coding and extracting short-circuits, and verifying results. The proposed method focuses on the robustness which can detect bad short-circuits even though the position and angle of PCB are not uniform and arbitrarily placed. Experimental results show that our method enables to detect bad short-circuits regardless of the location and angle of PCB placed variously and validate that the proposed method outperforms the conventional methods detecting bad short-circuits manually on the aspect of both the detection rate and time.

Development of Auto-spray system to improve the quality of 3D Scanning Quality (3D 스캔 시 품질향상을 위한 스프레이 도포 자동화 장비 개발)

  • Kim, Wonseop;Jo, Jae Heung;Kim, Dongsu;Kim, Donggyoo;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.100-105
    • /
    • 2016
  • The use of 3D scanners has increased gradually according to increasing 3D printer applications. The precision inspection of car parts or electronic components is an important issue not only in the field of mass production, but also in small-scale production. Recently, 3D scanner equipment efficiency and recognition technology has been improved continuously. On the other hand, the spraying time to prepare 3D scanning is time-consuming and has environmental problems. Therefore, an automatic spray system has been in demand by the manufacturing industry. Automatic spray equipment was newly developed for the preparation of a 3D scanner. In this research, the automatic spray system guarantees uniform spray operation. To determine the optimal spray parameters, various spraying methods, solutions and conditions were tested and compared with the experiments. The preparation time for 3D scanning was reduced to 1/10 compared to the manual spraying time, and indicates the optimal spraying conditions through a comparison of various spray coating conditions.