• Title/Summary/Keyword: Auto Sailing System

Search Result 5, Processing Time 0.026 seconds

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim, Hwan-Seong;Nguyen, Duy-Anh;Kim, Heon-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.45-53
    • /
    • 2004
  • In this paper, an INS compensation algorithm for auto sailing system is proposed, where low cost IMU (Inertial Measurement Unit) is used for measuring the accelerometer data. First, we denote the basic INS algorithm with IMU and show that how to compensate the error of position by using low cost IMU. Second, in considering the ship's characteristic and ocean environments, we consider with a factor as a periodic external disturbance which effects to the exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm by using experiments results.

  • PDF

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim Hwan-Seong;Nguyen Duy Anh;Kim Heon-Hui
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.803-808
    • /
    • 2004
  • In this paper, an INS compensation algorithm is proposed using the accelerometer from IMU. First, we denote the basic INS algorithm and show that how to compensate the position error when low cost IMU is used. Second, considering the ship's characteristic and ocean environments, we consider with a drift as a periodic external environment change which is affected with exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm through the experiments, where the acceleration sensor is used to acquire real data.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Study on the Maneuvering Area of Ship in Moving at Single Point Mooring (SPM 이안 선박의 조종영역에 관한 기초 연구)

  • Kim Jin-Soo;Jong Jae-Yong;Kim Kyung-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.19-25
    • /
    • 2005
  • The work of VLCC SPM mainly is accomplished on the open sea. On the open sea as a result of meteorological condition and the ocean wave influence, When the weather condition is get bed, peremptorily moving to the safety place, bemuse of the gale and the billow, almost happened frequently, the pilot is unable to go on board and the tug is also unable to be used Now bemuse of the bad weather the VLCC SPM moving to the other safety place frequently happened in the ulsan port. the construction of new harbor, it constructed many break water around SPM. So that it is necessary to propose the new standard about how to maneuvering area actually. Now our country is at the blank stage about the establishment of SPM research Most of the situations refer to overseas standards. But these standards lack consistency and clarity. So when moving to the another safe place from SPM, we must Carry through the research and study on the ships using sailing through AIS Data We must put forward a new standard about maneuvering area of ships moving at SPM.

  • PDF

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.