• Title/Summary/Keyword: Auto Material

Search Result 319, Processing Time 0.073 seconds

A study on the characteristics of phosphating solution for automobile-aluminum-body sheets (차체용 알루미늄합금의 인산염피막 처리액의 특성 관한 연구)

  • Lee, K. H.;Ro, B. H.;Kim, M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.207-214
    • /
    • 1994
  • In consideration of global environmental protection and fuel saving, aluminum alloy sheets for auto body panels such as hood, fender etc., are expected one of the most promising materials for weight saving of cars. The chemical conversion coating is required to prevent the filiform corrosion occurring on painted aluminum. However the conventional process for the composited material mixed with aluminum and steel is complexs; aluminum part is chromated and assembled to the body, and then the steel body undergoes Zn phosphating. In order to overcome the low productivity due to the complex process and the environmental problem with a conventional process, a simultaneous zinc phosphating process for alsuminum and steel in an assembled condition is demanded. Newly developed phosphate solution has been investigated to characterize the phosphating behavior under various conditions. The optimum conditions of the phosphating solution for the application of the paint treatment derived as follows : about 0.3 for the ratio of Zn to $PO_4$, , 200~500 ppm for the concentration of fluoride ion, and 2.5~4.0 for pH. The concentration of dissolved aluminum ion must be kept below 2--ppm and suitable accelerator is found to be a mixture of 1g/$\ell$ $NO_2\;^-$, and 6g/$\ell$ $NO_3\;^-$.

  • PDF

Uncertainty of Total Alkaloids and Reducing Sugar Determination in Flue-cured Tobacco (황색종 담배중 전알카로이드와 환원당 분석에 대한 불확도 측정)

  • 백순옥;장기철;이운철;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study was carried out to evaluate the uncertainty in the analysis of total alkaloids and reducing sugar content in flue-cured tobacco. The sources of uncertainty associated with the analysis of total alkaloids and reducing sugar were the weighing of sample, the preparation of extracting solution, the addition of extracting solution into the sample, the preparation of standard solution, the precision of calibration curve for standard solution, the reproducibility of analysis, and the determination of water content in tobacco, etc. For the calculating uncertainties, Type A of uncertainty was evaluated by the statistical analysis of a series of observation, and Type B by the information based on supplier’s catalogue and/or certificated of calibration. It was shown that the main source of uncertainty was caused by the calibration curve of standard solution, the reproducibility of analysis, the volume measurement of 1$m\ell$, and the purity of nicotine reference material in the preparation of standard solution. The uncertainty in the addition of extracting solution, the sample weighing, the volume measurement of 100$m\ell$, and the determination of water content of tobacco contributed relatively little to the overall uncertainty. The expanded uncertainty of total alkaloids and reducing sugar in flue-cured tobacco at 95% level of confidence was $\pm$0.12% and $\pm$0.54%, respectively.

  • PDF

A Study on the Die Design for Manufacturing of High Pressure Gas Cylinder (고압가스 용기의 제조를 위한 금형설계에 관한 연구)

  • Choi, Young;Yoon, Ji-Hoon;Park, Yoon-So;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.153-162
    • /
    • 2004
  • This paper describes a research work on the die design for the deep drawing & ironing(D.D.I.) of high pressure gas cylinder. D.D.I die set is large-sized die used in horizontal press, which is usually composed of drawing, and ironing die. Design method of D.D.I. die set is very different from those of conventional cold forging die set.. Out diameter of the die set is fixed because of press specification and out diameter of the insert should be as small as possible for saving cost of material. In this study, D.D.I die set has been designed to consider those characteristics and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

A Piezoelectric Lens Actuator for Mobile Information Devices (모바일 기기용 렌즈 구동 압전형 액츄에이터 개발)

  • Lee, Hun-Tae;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.744-749
    • /
    • 2005
  • In this paper, a lens actuator for mobile devices is proposed using stack type piezoelectric materials. In general, the deformation of PZT actuators is not enough for lens motion when the allowed voltage is applied. The small stroke problem can be solved by accumulating a lot of small displacements in high frequency. In this paper, a new inch-worm type model for focusing actuator is suggested based on the interaction of inertial and frictional forces. Theoretical analysis and simulation using ANSYS are performed to verify the feasibility of the inch-worm PZT actuator model. Various types of clamps are considered to determine the effect of frictional force on the motion, and appropriate clamp-actuator models are proposed. The proposed models are experimentally verified and the experimental results show high correspondence with theoretical and simulated values. The inch-worm type focusing actuator enable a large stroke with 7.79 mm/sec with 10kHz and 10V.

  • PDF

Comparison of Wear Amount of Surface Coating Layers on Dies for Cold-Stamped Products with MART1470 (MART1470 판재 냉간 프레스 성형용 금형 코팅층의 마모량 비교)

  • Son, M.K.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • In this paper, wear characteristics of PVD coatings were compared on the die surface for cold stamping of MART1470 steel sheet with the finite element analysis and the pin-on-disc wear test. Three types of PVD coatings (CrN, TiAlCrN, and MoS2TiCr(W)N) were considered for the tool surface made of STD11 material. The stamping process of an auto-body part was analyzed with the finite element method. Ranges of process variables for the wear test such as contact pressure, relative speed, and sliding distance were predicted from analysis results. In order to quantitatively analyze wear characteristics of each coating, the amount of wear was measured and compared according to process variables with the pin-on-disc wear test. The influence of each process variable was investigated and the wear characteristics of the three coating layers were quantitatively compared. It was confirmed that the wear characteristics of MoS2TiCr(W)N coating were better than those of CrN and TiAlCrN. It was noted that the proposed prediction approach could predict and respond to the wear phenomenon occurring in the stamping process.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

Sectional analysis of stamping processes using Equilibrium approach (평형해법에 의한 스탬핑 공정의 단면 해석)

  • Yoon, J.W.;Yoo, D.J.;Song, I.S.;Yang, D.Y.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

Design and Implementation of Service based Virtual Screening System in Grids (그리드에서 서비스 기반 가상 탐색 시스템 설계 및 구현)

  • Lee, Hwa-Min;Chin, Sung-Ho;Lee, Jong-Hyuk;Lee, Dae-Won;Park, Seong-Bin;Yu, Heon-Chang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.237-247
    • /
    • 2008
  • A virtual screening is the process of reducing an unmanageable number of compounds to a limited number of compounds for the target of interest by means of computational techniques such as molecular docking. And it is one of a large-scale scientific application that requires large computing power and data storage capability. Previous applications or softwares for molecular docking such as AutoDock, FlexX, Glide, DOCK, LigandFit, ViSION were developed to be run on a supercomputer, a workstation, or a cluster-computer. However the virtual screening using a supercomputer has a problem that a supercomputer is very expensive and the virtual screening using a workstation or a cluster-computer requires a long execution time. Thus we propose a service-based virtual screening system using Grid computing technology which supports a large data intensive operation. We constructed 3-dimensional chemical molecular database for virtual screening. And we designed a resource broker and a data broker for supporting efficient molecular docking service and proposed various services for virtual screening. We implemented service based virtual screening system with DOCK 5.0 and Globus 3.2 toolkit. Our system can reduce a timeline and cost of drug or new material design.

Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 시멘테이션에 의한 백금족(白金族) 금속(金屬)의 회수(回收))

  • Kim, Min-Seuk;Kim, Byung-Su;Kim, Eun-Young;Kim, Soo-Kyung;Ryu, Jae-Wook;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.36-45
    • /
    • 2011
  • The recovery of platinum group metals (PGMs) from the leach solution of spent auto-catalyst and the wash solution of the leach residue was investigated in the laboratory scale experiments by the cementation process using metal powders as the reductant. In this study, the effect of Al, Mg and Zn powders on the cementation process was particularly examined. Aluminum powder was selected as the most suitable reductant for the cementation of PGMs. At the cementation time of 10 minute under the aluminium stoichimetric amount of 19.3 and the reaction temperature of $50{\sim}60^{\circ}C$, the recovery of platinum group metals from the leach solution of the spent auto-catalyst was found to be 99.3%, 99.4%, 90.2% for Pt, Pd and Rh, respectively. Under the same conditions with the aluminium stoichimetric amount of 45, the recovery of platinum group metals from the wash solution of the leach residue of spent catalyst was observed to be 97%, 97% and 90% for Pt, Pd and Rh, respectively. In addition, it was possible to upgrade the platinum group metals in the precipitates obtained from the cementation process by about 10% through the removal of metal impurities by the nitric acid leaching at ambient temperature.

A Study on the Development of AI-Based Fire Fighting Facility Design Technology through Image Recognition (이미지 인식을 통한 AI 기반 소방 시설 설계 기술 개발에 관한 연구)

  • Gi-Tae Nam;Seo-Ki Jun;Doo-Chan Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.883-890
    • /
    • 2022
  • Purpose: Currently, in the case of domestic fire fighting facility design, it is difficult to secure highquality manpower due to low design costs and overheated competition between companies, so there is a limit to improving the fire safety performance of buildings. Accordingly, AI-based firefighting design solutions were studied to solve these problems and secure leading fire engineering technologies. Method: Through AutoCAD, which is widely used in existing fire fighting design, the procedures required for basic design and implementation design were processed, and AI technology was utilized through the YOLO v4 object recognition deep learning model. Result: Through the design process for fire fighting facilities, the facility was determined and the drawing design automation was carried out. In addition, by learning images of doors and pillars, artificial intelligence recognized the part and implemented the function of selecting boundary areas and installing piping and fire fighting facilities. Conclusion: Based on artificial intelligence technology, it was confirmed that human and material resources could be reduced when creating basic and implementation design drawings for building fire protection facilities, and technology was secured in artificial intelligence-based fire fighting design through prior technology development.