• Title/Summary/Keyword: Authorized nuclear inspection

Search Result 5, Processing Time 0.02 seconds

Human resource planning for authorized inspection activity

  • Lee, Seung-hee;Field, Robert Murray
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.618-625
    • /
    • 2019
  • When newcomer countries consider a nuclear power programme, it is recognized that the most important organizations are the Nuclear Energy Programme Implementing Organization (NEPIO), the regulator, and an operating organization. Concerning the number of construction delays these days, one of the essential organizations is an Authorized Inspection Agency (AIA). According to World Nuclear Industry Status Report, all of the reactors under construction in eight out of the thirteen countries have experienced delays. Globally, the Flamanville 3 project and Sanmen Unit 1 are 6.5 years and 5 years late respectively. One of the major reasons of delay is due to inappropriate manufacturing and inspection on safety class components. The recommendations are made to develop such an organization: (i) find existing inspection organizations in relevant industries, (ii) contract with expatriates who have experience on nuclear inspection, (iii) develop a legislative framework to authorize the inspection organization with enforcement, (iv) include a contract clause in the BIS for developing the AIA, (v) hold training programmes from vendor country, (vi) during manufacturing and construction, domestic AIA shall be involved.

Fabrication of Mechanical fatigue flawed Specimen and Evaluation of Flaw Size (기계적 피로결함 시험편 제조 및 결함 크기 평가)

  • Hong, Jae-Keun;Kim, Woo-Sung;Son, Young-Ho;Park, Ban-Uk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Mechanical or thermal fatigue crack and intergranular stress corrosion cracking could be occured in the in-service nuclear power plant and mechanical fatigue crack was selected to study in this paper. Specimen was designed to produce mechanical fatigue flaw under tensile stress. The number of cycles and the level of stress were controlled to obtain the desired flaw roughness. After the accurate physical measurement of the flaw size and location, fracture surface was seal-welded in place to ensure the designed location and site. The remaining weld groove was then filled by using gas-tungsten are welding(GTAW) and flux-cored arc welding(FCAW). Results of radio graphic and ultrasonic testing showed that fatigue cracks were consistent with the designed size and location in the final specimens.

Several Problems in Reactor Coolant System Flow Rate Measurement

  • Ahn, Seung-Hoon;Auh, Geun-Sun;Suh, nam-Cuk;Park, Jun-Sang;Koo, Bon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.592-608
    • /
    • 1998
  • Inspection of RCS flow measurements for the domestic pressurized water reactors has been performed by the Korea Institute of Nuclear Safety (KINS) as one of the authorized periodical inspection activities. The inspection results for the Westinghouse-type plants reveal that 1) the RCS flow instrumentation has been calibrated by using the initial design and commissioning test result, without reflecting the cycle specific reference flow measurements, 2) the loop-to-loop now variation in the actual flow measurement which has not been considered in the safety analysis affects the asymmetric How transient results, and 3) the measured RCS flows in Kori 3 and 4, Yonggwang 1 and 2 do not support the definition of the best estimate RCS flow, approaching the RCS flow limit. In this study, the revealed problems were discussed with review of the design and the RCS flow measurement uncertainty evaluation, and the technical approaches and recommendations for resolving these problems were proposed.

  • PDF

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Cause of and Solution for Damage to STS310S Tube in Heat Exchange Devices (열교환기 STS310S 튜브의 손상 원인 및 대책)

  • Kim, Jin Wook;Kim, Seon Hwa;Jeong, Jin Hyuk;Kim, Young Soo;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • The STS310S tube has excellent heat transfer ability and is widely used as the material for heat transfer tubes in heat exchange devices. Mixtures of gas and water flow inside the tube whereas hot flame flows outside it. In this environment, the material of the tube may undergo embrittlement, which can cause leakage. Cracks can propagate from the inside of the tube to its outside and result in brittle fracture. This study identified the cause of brittle fracture in the STS310S tube through experiments and discussion, and proposed solutions to prevent fracture.