• Title/Summary/Keyword: Authentication Key Exchange

Search Result 186, Processing Time 0.019 seconds

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.

Analysis on Security Vulnerability of Password-based key Exchange and Authentication Protocols (패스워드 기반 키 교환 및 인증 프로토콜의 안전성에 관한 분석)

  • Park, Choon-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1403-1408
    • /
    • 2008
  • A number of three party key exchange protocols using smart card in effort to reduce server side workload and two party password based key exchange authentication protocols has been proposed. In this paper, we introduce the survey and analysis on security vulnerability of smart card based three party authenticated key exchange protocols. Furthermore, we analyze Kwak et al's password based key exchange and authentication protocols which have shown security weakness such as Shim et al's off-line password guessing attack and propose the countermeasure to deter such attack.

  • PDF

An Algorithm for Secure key Exchange based on the Mutual Entity Authentication (상호 실체인증 기능을 갖는 안전한 키 교환 알고리즘)

  • Kang, Chang-Goo;Choi, Yong-Rak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2083-2090
    • /
    • 1998
  • In this paper, we propose two authentication exchange schemes which combine public key-based mutual authentication with a Diffie-Hellman key derivation exchange. The security of key exchange of the proposed schemes depends on the discrete logarithm problem. The ,securtly of the etity authentication depends on that of the signature mechanism to be used in the proposed scheme. In comparisun with the Kerberos, X.509 exchanges, and ISO 3-way authentication protocol, the proposed schemes are not only simple and efficient. but also are resistant to the full range of replay and interceptiun attacks.

  • PDF

One time password key exchange Authentication technique based on MANET (MANET 기반 원타임 패스워드 키교환 인증기법)

  • Lee, Cheol-Seung;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1367-1372
    • /
    • 2007
  • This paper suggests One-time Password key exchange authentication technique for a strong authentication based on MANET and through identify wireless environment security vulnerabilities, analyzes current authentication techniques. The suggested authentication technique consists of 3 steps: Routing, Registration, and Running. The Routing step sets a safe route using AODV protocol. The Registration and Running step apply the One-time password S/key and the DH-EKE based on the password, for source node authentication. In setting the Session key for safe packet transmission and data encryption, the suggested authentication technique encrypts message as H(pwd) verifiers, performs key exchange and utilizes One time password for the password possession verification and the efficiency enhancement. EKE sets end to end session key using the DH-EKE in which it expounds the identifier to hash function with the modula exponent. A safe session key exchange is possible through encryption of the H(pwd) verifier. The suggested authentication technique requires exponentiation and is applicable in the wireless network environment because it transmits data at a time for key sharing, which proves it is a strong and reliable authentication technique based on the complete MANET.

Wireless PKI for Reducing Certificate Acquisition Time According to Authentication Path

  • Choi Seung-Kwon;Cho Yong-Hwan;Shin Seung-Soo;Jang Yoon-Sik
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • In this paper, we proposed an advanced authentication structure for reducing the certificate acquisition time which is one of the factors that should be improved in a conventional wireless PKI. A conventional key exchange method simply performs the key exchange setup step based on discrete algebraic subjects. But the mutual-authentication procedure of wireless PKI for reducing authentication time uses an elliptical curve for a key exchange setup step. We simulated and compared the authentication structure proposed by Sufatrio, K. Lam[4] and proposed authentication structure in terms of the authentication time. Simulation results show that the proposed method reduces the authentication time compared to the conventional wireless PKI authentication method.

  • PDF

An efficient and security/enhanced Re-authentication and Key exchange protocol for IEEE 802.11 Wireless LANs using Re-authentication Period (재인증주기를 통한 IEEE 802.11 무선랜 환경에서의 안전하고 효율적인 재인증과 키교환 프로토콜)

  • 김세진;안재영;박세현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.221-224
    • /
    • 2000
  • In this paper, we introduce an efficient and security-enhanced re-authentication and key exchange protocol for IEEE 802.11 Wireless LANs using Re-authentication Period. We introduce a low computational complexity re-authentication and key exchange procedure that provides robustness in face of cryptographic attacks. This procedure accounts for the wireless media limitations, e.g. limited bandwidth and noise. We introduce the Re-authentication Period that reflects the frequency that the re-authentication procedure should be executed. We provide the user with suitable guidelines that will help in the determination of the re-authentication period.

  • PDF

EAP Using Split Password-based Authenticated Key Agreement Protocol for IEEE Std 802.1x User Authentication (IEEE Std 802.1x 사용자 인증을 위한 분할된 패스워드 인증 기반 EAP)

  • Ryu, Jong-Ho;Seo, Dong-Il;Youm, Heung-Youl
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.27-43
    • /
    • 2005
  • EAP provides authentication for each entity based on IEEE Std 802.1x Wireless lAN and RADIUS/DIAMETER protocol, and it uses certificate, dual scheme(e.g., password and token) with the authentication method. The password-based authentication scheme for authenticated key exchange is the most widely-used user authentication method due to various advantages, such as human-memorable simplicity, convenience, mobility, A specific hardware device is also unnecessary, This paper discusses user authentication via public networks and proposes the Split Password-based Authenticated Key Exchange (SPAKE), which is ideal for both authenticating users and exchanging session keys when using a subsequent secure communication over untrusted network, And then we provides EAP authentication framework EAP-SPAKE by using it.

  • PDF

Analysis for Authentication waiting time in Hand-over using Queueing Model (큐잉 모델을 이용한 핸드오버 시 인증 대기시간 분석)

  • Shin Seung-Soo;Kim Duck-Sool
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.123-132
    • /
    • 2005
  • In this paper, a conventional key exchange method simply Performs the key exchange setup step based on discrete algebraic subjects. But the mutual-authentication procedure of wireless PKI for reducing authentication time uses an elliptical curve for a key exchange setup step. Proposed hand-over method shows reduced hand-over processing time than conventional method since it can reduce CRL retrieval time. Also, we compared proposed authentication structure and conventional algorithm, and simulation results show that proposed authentication method outperforms conventional algorithm in authentication waiting time.

  • PDF

Performance Analysis for Reducing Authentication Time in Hand-over (핸드오버시 인증 대기시간 단축을 위한 성능 분석)

  • Shin Seung-Soo;Seo Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.163-169
    • /
    • 2004
  • In this paper, a conventional key exchange method simply performs the key exchange setup step based on discrete algebraic subjects. But the mutual-authentication procedure of wireless PKI for reducing authentication time uses an elliptical curve for a key exchange setup step. Proposed handover method shows reduced handover processing time than conventional method since it can reduce CRL retrieval time. Also, we compared proposed authentication structure and conventional algorithm. and simulation results show that proposed authentication method outperforms conventional algorithm in all environment regardless of call arrival rate. queue service rate. queue size.

  • PDF

A Lightweight Three-Party Privacy-preserving Authentication Key Exchange Protocol Using Smart Card

  • Li, Xiaowei;Zhang, Yuqing;Liu, Xuefeng;Cao, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1313-1327
    • /
    • 2013
  • How to make people keep both the confidentiality of the sensitive data and the privacy of their real identity in communication networks has been a hot topic in recent years. Researchers proposed privacy-preserving authenticated key exchange protocols (PPAKE) to answer this question. However, lots of PPAKE protocols need users to remember long secrets which are inconvenient for them. In this paper we propose a lightweight three-party privacy-preserving authentication key exchange (3PPAKE) protocol using smart card to address the problem. The advantages of the new 3PPAKE protocol are: 1. The only secrets that the users need to remember in the authentication are their short passwords; 2. Both of the users can negotiate a common key and keep their identity privacy, i.e., providing anonymity for both users in the communication; 3. It enjoys better performance in terms of computation cost and security. The security of the scheme is given in the random oracle model. To the best of our knowledge, the new protocol is the first provably secure authentication protocol which provides anonymity for both users in the three-party setting.