• Title/Summary/Keyword: Authenticated encryption

Search Result 49, Processing Time 0.022 seconds

Multi Server Password Authenticated Key Exchange Using Attribute-Based Encryption (속성 기반 암호화 방식을 이용한 다중 서버 패스워드 인증 키 교환)

  • Park, Minkyung;Cho, Eunsang;Kwon, Ted Taekyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1597-1605
    • /
    • 2015
  • Password authenticated key exchange (PAKE) is a protocol that a client stores its password to a server, authenticates itself using its password and shares a session key with the server. In multi-server PAKE, a client splits its password and stores them to several servers separately. Unless all the servers are compromised, client's password will not be disclosed in the multi-server setting. In attribute-based encryption (ABE), a sender encrypts a message M using a set of attributes and then a receiver decrypts it using the same set of attributes. In this paper, we introduce multi-server PAKE protocol that utilizes a set of attributes of ABE as a client's password. In the protocol, the client and servers do not need to create additional public/private key pairs because the password is used as a set of public keys. Also, the client and the servers exchange only one round-trip message per server. The protocol is secure against dictionary attacks. We prove our system is secure in a proposed threat model. Finally we show feasibility through evaluating the execution time of the protocol.

A Cryptographic Processor Supporting ARIA/AES-based GCM Authenticated Encryption (ARIA/AES 기반 GCM 인증암호를 지원하는 암호 프로세서)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2018
  • This paper describes a lightweight implementation of a cryptographic processor supporting GCM (Galois/Counter Mode) authenticated encryption (AE) that is based on the two block cipher algorithms of ARIA and AES. It also provides five modes of operation (ECB, CBC, OFB, CFB, CTR) for confidentiality as well as the key lengths of 128-bit and 256-bit. The ARIA and AES are integrated into a single hardware structure, which is based on their algorithm characteristics, and a $128{\times}12-b$ partially parallel GF (Galois field) multiplier is adopted to efficiently perform concurrent processing of CTR encryption and GHASH operation to achieve overall performance optimization. The hardware operation of the ARIA/AES-GCM AE processor was verified by FPGA implementation, and it occupied 60,800 gate equivalents (GEs) with a 180 nm CMOS cell library. The estimated throughput with the maximum clock frequency of 95 MHz are 1,105 Mbps and 810 Mbps in AES mode, 935 Mbps and 715 Mbps in ARIA mode, and 138~184 Mbps in GCM AE mode according to the key length.

Invited Speech at ICSS 2007 Generation of Session, Authentication, and Encryption Keys for CDMA2000 1x EV-DO Air Interface Standard

  • Rhee, Man-Young
    • Review of KIISC
    • /
    • v.17 no.2
    • /
    • pp.9-23
    • /
    • 2007
  • The air interface supports a security layer which provides the key exchange protocol, authentication protocol, and encryption protocol. The authentication is performed on the encryption protocol packet. The authentication protocol header or trailer may contain the digital signature that is used to authenticate a portion of the authentication protocol packet that is authenticated. The encryption protocol may add a trailer to hide the actual length of the plaintext of padding to be used by the encryption algorithm. The encryption protocol header may contain variables such as the initialization vector (IV) to be used by the encryption protocol. It is our aim to firstly compute the session key created from the D H key exchange algorithm, and thereof the authenticating key and the encryption key being generated from the session key.

An Efficient Identity-Based Deniable Authenticated Encryption Scheme

  • Wu, Weifeng;Li, Fagen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1904-1919
    • /
    • 2015
  • Deniable authentication protocol allows a sender to deny his/her involvement after the protocol run and a receiver can identify the true source of a given message. Meanwhile, the receiver has no ability to convince any third party of the fact that the message was sent by the specific sender. However, most of the proposed protocols didn't achieve confidentiality of the transmitted message. But, in some special application scenarios such as e-mail system, electronic voting and Internet negotiations, not only the property of deniable authentication but also message confidentiality are needed. To settle this problem, in this paper, we present a non-interactive identity-based deniable authenticated encryption (IBDAE) scheme using pairings. We give the security model and formal proof of the presented IBDAE scheme in the random oracle model under bilinear Diffie-Hellman (BDH) assumption.

An AES-GCM Crypto-core for Authenticated Encryption of IoT devices (IoT 디바이스의 인증암호를 위한 AES-GCM 암호코어)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.253-255
    • /
    • 2017
  • 본 논문에서는 IoT 디바이스의 인증암호를 위한 AES-GCM 암호코어를 설계하였다. AES-GCM 코어는 블록암호 AES와 GHASH 연산으로 기밀성과 무결성을 동시에 제공한다. 기밀성 제공을 위한 블록암호 AES는 운영모드 CTR과 비밀키 길이 128/256-bit를 지원한다. GHASH 연산과 AES 암호화(복호화)의 병렬 동작을 위해 소요 클록 사이클을 일치시켜 GCM 동작을 최적화 하였다. 본 논문에서는 AES-GCM 코어를 Verilog HDL로 모델링 하였고 ModelSim을 이용한 시뮬레이션 검증 결과 정상 동작함을 확인하였으며 Xilinx Virtex5 XC5VSX95T FPGA 디바이스 합성결과 4,567 슬라이스로 구현되었다.

  • PDF

Identity-based Deniable Authenticated Encryption for E-voting Systems

  • Jin, Chunhua;Chen, Guanhua;Zhao, Jianyang;Gao, Shangbing;Yu, Changhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3299-3315
    • /
    • 2019
  • Deniable authentication (DA) is a protocol in which a receiver can generate an authenticator that is probabilistically indistinguishable from a sender. DA can be applied in many scenarios that require user privacy protection. To enhance the security of DA, in this paper, we construct a new deniable authenticated encryption (DAE) scheme that realizes deniable authentication and confidentiality in a logical single step. Compared with existing approaches, our approach provides proof of security and is efficient in terms of performance analysis. Our scheme is in an identity-based environment; thus, it avoids the public key certificate-based public key infrastructure (PKI). Moreover, we provide an example that shows that our protocol is applicable for e-voting systems.

Image Authentication Using Only Partial Phase Information from a Double-Random-Phase-Encrypted Image in the Fresnel Domain

  • Zheng, Jiecai;Li, Xueqing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • The double-random phase encryption (DRPE) algorithm is a robust technique for image encryption, due to its high speed and encoding a primary image to stationary white noise. Recently it was reported that DRPE in the Fresnel domain can achieve a better avalanche effect than that in Fourier domain, which means DRPE in the Fresnel domain is much safer, to some extent. Consequently, a method based on DRPE in the Fresnel domain would be a good choice. In this paper we present an image-authentication method which uses only partial phase information from a double-random-phase-encrypted image in the Fresnel domain. In this method, only part of the phase information of an image encrypted with DRPE in the Fresnel domain needs to be kept, while other information like amplitude values can be eliminated. Then, with the correct phase keys (we do not consider wavelength and distance as keys here) and a nonlinear correlation algorithm, the encrypted image can be authenticated. Experimental results demonstrate that the encrypted images can be successfully authenticated with this partial phase plus nonlinear correlation technique.

Optical Encryption and Information Authentication of 3D Objects Considering Wireless Channel Characteristics

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • In this paper, we present an optical encryption and information authentication of 3D objects considering wireless channel characteristics. Using the optical encryption such as double random phase encryption (DRPE) and 3D integral imaging, a 3D scene with encryption can be transmitted. However, the wireless channel causes the noise and fading effects of the 3D transmitted encryption data. When the 3D encrypted data is transmitted via wireless channel, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, and so on. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. In addition, using computational volumetric reconstruction of integral imaging and advanced correlation filters, the noise effects may be remedied and 3D information may be authenticated. To prove our method, we carry out an optical experiment for sensing 3D information and simulation for optical encryption with DRPE and authentication with a nonlinear correlation filter. To the best of our knowledge, this is the first report on optical encryption and information authentication of 3D objects considering the wireless channel characteristics.

Smart Card Certification-Authority Distribution Scheme using Attributes-Based Re-Encryption (속성기반 재 암호화를 이용한 스마트카드 인증권한 분배스킴)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.3
    • /
    • pp.168-174
    • /
    • 2010
  • User authentication is an important requirement to provide secure network service. Therefore, many authentication schemes have been proposed to provide secure authentication, such as key agreement and anonymity. However, authority of scheme is limited to one's self. It is inefficient when authenticated users grant a certification to other users who are in an organization which has a hierarchical structure, such as a company or school. In this paper, we propose the first authentication scheme to use Attributes-Based Re-encryption that creates a certification to other users with specified attributes. The scheme, which has expanded from Rhee et al. scheme, has optimized computation performance on a smart card, ensuring the user's anonymity and key agreement between users and server.

An Improved One Round Authenticated Group Key Agreement (개선된 원 라운드 인증 그룹 키 합의 프로토콜)

  • Kim, Ho-Hee;Kim, Soon-Ja
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • Several identity-based and authenticated key agreement protocols have been proposed. It remains at issue to design secure identity based and authenticated key agreement protocols. In this paper, we propose a one round authenticated group key agreement protocol which uses one more key pair as well as the public key and private key of typical IBE(Identity-Based Encryption) system. The proposed protocol modified Shi et al.'s protocol and He et al.'s protocol. The public and private keys and the signature process of our protocol are simpler than them of their protocols. Our protocol is secure and more efficient than their protocols in communication and computation costs.