• Title/Summary/Keyword: Austenite phase

Search Result 235, Processing Time 0.021 seconds

Estimation of Microstructures and Material Properties of HAZ in SA508 Reactor Pressure Vessel (원자로 압력용기 용접열영향부의 미세조직 및 재료물성 예측)

  • Lee, S.G.;Kim, J.S.;Jin, T.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.138-143
    • /
    • 2001
  • To perform the rigorous integrity evaluation of RPV, it is necessary to consider metallurgical factors such as microstructure evolution during multi-pass welding process and PWHT. The microstructures of the heat affected zone(HAZ) of SA508 steel were predicted by a combination of simulated thermal analysis and a simple kinetic models for austenite grain growth and austenite-ferrite transformation. Phase equilibrium of SA508 steel were calculated using a Thermo-Calc package. Carbide growth in th HAZ were predicted by a empirical model, taking into account the predicted microstructure evolution.

  • PDF

Fatigue Crack Propagation of Super Duplex Stainless Steel and Time-Frequency Analysis of Acoustic Emission (수퍼 2상 스테인리스강의 피로균열 진전특성과 음향방출신호의 시간-주파수 해석)

  • Lee, Sang-Kee;Do, Jae-Yoon;Nam, Ki-Woo;Kang, Chang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.73-78
    • /
    • 2000
  • On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at $1200^{\circ}C$ had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was $200{\sim}300kHz$ having no correlation with heat treatment and crack length, and 500kHz was obtained by dimple and separate of inclusion

  • PDF

Phase Changes of the STS 431 Martensitic Stainless Steel after High Temperature Gas Nitriding Treatment (STS 431 마르텐사이트계 스테인리스강의 고온 가스 질화 열처리에 따른 상변화)

  • Yoo, D.K.;Kong, J.H.;Lee, H.W.;Kang, C.Y.;Kim, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.244-250
    • /
    • 2008
  • This study has investigated the surface phase change, hardness variation, surface precipitates, nitrogen content and corrosion resistance in STS 431 (17Cr-2Ni-0.2C-0.01Nb) martensitic stainless steel after high temperature gas nitriding (HTGN) treatment at the temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The HTGN-treated surface layer appeared $Cr_2N$ of rod type, carbo-nitride of round type and fine precipitates in the austenite matrix. On the other hand the interior region where the nitrogen was not permeated, exhibited martensite phase. The surface hardness showed 250~590 HV, depending on the HTGN treatment conditions, while the interior martensitic phase represented 520 HV. The permeation depth of nitrogen increased with increasing the HTGN-treated temperature. The nitrogen concentration of the surface layer appeared approximately ~0.17% at $1100^{\circ}C$. On comparing the corrosion resistance between solution-annealed and HTGN-treated steels, the corrosion resistance of HTGN-treated steel was superior to that of solution-annealed specimens.

Influence of Treatment Temperature on Surface Characteristics during Low Temperature Plasma Carburizing and DLC duplex treatment of AISI316L Stainless Steel (AISI316L 강에 저온 플라즈마침탄 및 DLC 복합 코팅처리 시 처리온도에 따른 표면특성평가)

  • Lee, In-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.60-65
    • /
    • 2011
  • A low temperature plasma carburizing process was performed on AISI 316L austenitic stainless steel to achieve an enhancement of the surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface hardened layer during low temperature plasma carburizing in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}_c$) phase, which contains a high saturation of carbon (S phase), was formed on all of the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $550^{\circ}C$. The hardened layer thickness of ${\gamma}_c$ increased up to about $65{\mu}m$ with increasing treatment temperature. The surface hardness reached about 900 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). A minor loss in corrosion resistance was observed for the specimens treated at temperatures of $300^{\circ}C{\sim}450^{\circ}C$ compared with untreated austenitic stainless steel. In particular, the precipitation of chromium carbides at $550^{\circ}C$ led to a significant decrease in the corrosion resistance. A diamond-like carbon (DLC) film coating was applied to improve the wear and friction properties of the S phase layer. The DLC film showed a low and stable friction coefficient value of about 0.1 compared with that of the carburized surface (about 0.45). The hardness and corrosion resistance of the S phase layer were further improved by the application of such a DLC film.

A Study on the Fabrication of STS 316L Films by Ion Beam Deposition with Ion Source (이온빔 보조 증착법을 이용한 STS 316L 박막 합성에 관한 연구)

  • Lee, J.H.;Song, Y.S.;Lee, K.H.;Lee, K.H.;Lee, D.Y.;Yoon, J.K.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.587-592
    • /
    • 2003
  • The thin films of 316L stainless steel were made on glass and S45C substrate by Ion beam assisted deposition with reactive atmosphere of argon and nitrogen. The films were deposited at the various conditions of ion beam power and the ratios of Ar/$N_2$gas. Properties of these films were analyzed by glancing x-ray diffraction method(GXRD), AES, potentiodynamic test, and salt spray test. The results of GXRD showed that austenite phase could be appeared by $N_2$ion beam treatment and the amount of austenite phase increased with the amount of nitrogen gas. The films without plasma ion source treatment had the weak diffraction peak of ferrite phase. But under the Ar plasma ion beam treatment, the strong diffraction peaks of ferrite phase were appeared and the grain size was increased from 12 to 16 nm. Potentiodynamic polarization test and salt spray test indicated that the corrosion properties of the STS 316L films with nitrogen ion source treatment were better than bulk STS 316L steel and STS 316L films with Ar ion source treatment.

Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels (주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석)

  • Gyeong-Geun Lee;Suk-Min Hong;Ji-Su Kim;Dong-Hyun Ahn;Jong-Min Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

The Effect of the Multi-phase (ferrite-bainite-martensite) on the Strengthening and Toughening in the Ductile Cast Iron (구상흑연주철의 강인화에 미치는 3상 혼합조직의 영향)

  • Kim, Sug-Won;Lee, Bang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.310-321
    • /
    • 1988
  • This study is aimed to investigate the effects of the multi-phase(ferrite-bainite-martensite) on the strengthening and toughening in ductile cast iron. All the specimen were austenitized at eutectoid transformation temperature range(${\alpha}+{\gamma}$) for 1hr and austempered at $300^{\circ}C$ and $400^{\circ}C$ for various holding time, and then quenched in iced water for multi - phase (${\alpha}-B-M$). When the volume fraction of martensite is below 15%, excellent maximum fracture load can be obtained due to strengthening by the fine martensite, but, with increasing of volume fraction over 15%, it was decreased drastically. The martensite size became finer and the shape of it changed from bar to spherical type with increasing of austempering holding time. The higher the austenitizing temperature is, the more preferential is the formation of austenite phase around the graphite nodules improving strength and toughness of austempered ductile cast iron.

  • PDF

Numerical Calculation of Transformation Plasticity Using a FE Analysis Coupled with n Phase Field Model (상장모델과 유한요소법의 연계해석을 통한 변태소성 전산모사)

  • Cho, Y.G.;Kim, J.Y.;Cha, P.R.;Lee, J.K.;Han, H.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.318-321
    • /
    • 2009
  • Transformation plasticity is that when a phase transformation of ferrous or non-ferrous alloys progresses even under an extremely small applied stress compared with a yield stress of the material, a permanent deformation occurs. One of widely accepted description for the transformation was proposed by Greenwood and Johnson [1]. Their description is based on an assumption that a weaker phase of an ideal plastic material could deform plastically to accommodate the externally applied stress and the internal stress caused by the volumetric change accompanying the phase transformation. In this study, an implicit finite element model was developed to simulate the deformation behavior of a low carbon steel during phase transformation. The finite element model was coupled with a phase field model, which could simulate the kinetics for ferrite to austenite transformation of the steel. The thermo-elasto-plastic constitutive equation for each phase was adopted to confirm the weaker phase yielding, which was proposed by Greenwood and Johnson [1]. From the simulation, the origin of the transformation plasticity was quantitatively discussed comparing with the other descriptions of it.

  • PDF

Effect of Carbon Content on the Nitrogen Permeation Heat Treatment in Aluminum Bearing 13%Cr Stainless Steels (Al 함유 13%Cr 스테인리스강의 표면 질소침투 열처리에 미치는 첨가원소 탄소의 영향 (13%Cr 스테인리스강의 고질소 표면침투 열처리))

  • Yoo, D.K.;Park, J.U.;Joo, D.W.;Kim, K.D.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.151-157
    • /
    • 2000
  • This study aims to investigate the effect of carbon content on the surface nitrogen permeation of 13%Cr-1.8%Al alloyed stainless steels. The surface nitrogen permeation was performed at $1050^{\circ}C{\sim}1200^{\circ}C$ in the $1kg/cm^2$ nitrogen gas atmosphere. The nitrogen permeated surface layer of the specimen containing 0.03%C consists of AlN, martensite and retained austenite phases. while the surface layer of the specimen containing 0.14%C appears the $AlFe_3C_x$ phase including former three phases. The specimen containing 0.14%C shows lower total case depth than that containing 0.03%C at the nitrogen permeation temperatures of $1050^{\circ}C$ and $1100^{\circ}C$, while the total case depth of the specimen containing 0.14%C is remarkably increased at the temperature of $1150^{\circ}C$ and $1200^{\circ}C$ due to the increase in the retained austenite content. Martensitic phase, AlN and $AlFe_3C_x$ precipitate of the nitrogen permeated surface layer cause to increase the surface hardness of 550~600Hv.

  • PDF