• Title/Summary/Keyword: Austempered Gray Iron

Search Result 5, Processing Time 0.021 seconds

Mechanical Properties & Fracture Toughness of Austempered Gray Cast Iron(AGI) by Permanent Mould Casting (금형주조한 오스템퍼 회주철의 기계적성질 및 파괴인성)

  • Yi, Young-Sang;Lee, Ha-Sung;Kang, Dong-Myeong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The mechanical properties and fracture toughness of permanent mold cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. The iron was melted to eutectic composition in order to get better castability especially in permanent mold casting. Specimens prepared for tensile, impact and fracture toughness test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$ and $370^{\circ}C$ for 1 hour. The strength, impact and fracture toughness of permanent mold cast AGI were found to be superior to those of sand cast AGI. The maximum value of 836 MPA in tensile strength, was obtained at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mold casting.

  • PDF

Study on the Austenite Formation and Mechanical Properties of AGI (Austempered Gray Cast Iron) According to Aluminum Content (알루미늄 함량에 따른 AGI (Austempered Gray Cast Iron)의 오스테나이트 형성 및 기계적 특성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • Aluminum cast iron has excellent oxidation resistance and good resistance to sulfide and corrosion. Compared to Ti and Ni alloys, it is expected to be a substitute material for structural materials and stainless steels because it is relatively inexpensive to use Fe, which is a non-strategic element. This results in a weight reduction effect of about 30% as compared to the use of stainless steel. With regard to aluminum as an alloying material, it is an element that has been widely used for the alloying of cast iron in recent years. Practical use has been delayed owing to the resulting lack of ductility at room temperature and the sharp decrease in the strength above 600℃ of this alloy, however. The cause of the weak room temperature ductility is known to be environmental embrittlement by hydrogen, and the addition of various alloying elements has been attempted in order to mitigate these shortcomings. Although alloying elements such as vanadium, chromium, and manganese are mainly used to increase the hardness and wear resistance of gray cast iron, the price of finished products containing these elements and the problems associated with alloys with this material impose many limitations.

Effect of Austempering Treatment on Dynamic Characteristics of Brake Drums (오스템퍼링 처리가 브레이크 드럼의 동적 특성에 미치는 영향)

  • Yim, K.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The effect of austempering treatment on the dynamic properties of a brake drum was investigated to primarily evaluate the potential damping advantage of an AGI (austempered gray iron) drum over a PGI (pearlitic gray iron) drum. This investigation provides valuable information for brake noise reduction since the brake drum is most often the outstanding component that generates the noise of the brake assembly. Test results show that the AGI drum provided slightly larger damping values than the PGI drum for the first few major resonances observed. A finite element model of a drum was also developed to aid in studying its dynamic behavior. A good correlation was obtained between the analytical results and the actual measurement data.

A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron (오스템퍼 회주철의 파괴강도 특성에 관한 연구)

  • 이하성;강동명;이영상
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

Effect of Special Heat Treatments and Alloying Element(Ni) on Strengthening and Toughening of Ductile Cast Iron (구상흑연주철의 강인화에 미치는 특수열처리와 합금원소의 영향)

  • Kim, Sug-Won;Choi, Young-Seon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 1990
  • Ductile cast iron has a good ductility and ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the good modification of various matrix structures obtained by the heat treatment or addition of alloying elements. This study aims to investigate the effect of various special heat treatment(Cyclic Heat Treatment, Intermediate Heat Treatment, Step Quenching), austempering and alloying element(Ni) on the strength and toughness of ductile cast iron. The results obtained from this study are summarized as follows. 1) With addition of Ni, the amount of pearlite or bainite were increased and the morphologies of pearlite or bainite became finer by special heat treatments. 2) As the Ni added and not added ductile cast iron were treated by austenitizing at $900^{\circ}C$ and $840^{\circ}C$, in the latter the austenite was mostly formed in the vicinity of eutectic cell boundary, but in the former on the whole matrix. 3) In cyclic heat treatment, the volume fraction of pearlite was increased and the shape of pearlite was fined with increase of the number of cycle. 4) The shape of pearlite was mostly bar type in the intermediate heat treatment, but spheroidal type in step quenching. 5) The mechanical properties of ductile cast iron containing 1.5%Ni austempered at $400^{\circ}C$ for 25min. after austenitizing at $900^{\circ}C$ for 15min. were a good value of hardness 105(HRB), impact energy 12.5(kg.m), tensile strength 112($kg/mm^2$) and elongation 6.8(%).

  • PDF