• 제목/요약/키워드: Auqa regia

검색결과 2건 처리시간 0.015초

Sulfhydryl Cotton Enrichment Separation-Determination of Silver in Geological Samples by ICP-MS

  • Li, Dan;Zhao, Zhifei;Chu, Qin;Fang, Jindong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3561-3565
    • /
    • 2011
  • A rapid and inexpensive method was developed for the determination of trace silver in geological samples by using sulfhydryl cotton coupled with ICP-MS. The interferences such as $^{90}Zr$, $^{92}Mo$ and $^{93}Nb$ on silver were investigated in detail. Sulfhydryl cotton was found to be an effective adsorbent for separation of interferences for Ag in the solutions. Excellent agreements with the certified values were obtained for all the certified reference materials. The memory effects of Ag by ICP-MS were examined by using different agents, including water, nitric acid, and HCl-thiourea to all standards/samples. The agents also acted as cleansing solutions. A combination of HCl with thiourea gave the minimum memory effect. For comparison of results, a proposed Chinese Geology Survey procedure DC-ARC-AES and a direct determination pretreatment method of ICP-MS (water bath- auqa regia digestion) were studied. Under optimal conditions, the detection limits of our method for $^{107}Ag$ and $^{109}Ag$ were 1.2 ng/g and 1.3 ng/g, which offered much better accuracy for some difficult analysis geological samples such as GBW07604, GBW07605.

토양오염공정시험기준에 따른 토양 중금속 추출 시 분해 온도가 미치는 영향 (Influence of Digestion Temperature on the Extraction of Soil Heavy Metal by Korean Ministry of Environment Standard Method)

  • 신건환;박현정;오기석;정가인;신동준;이군택;주창규;이상모;김태승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권3호
    • /
    • pp.11-21
    • /
    • 2022
  • The purpose of this study was to evaluate the influences of digestion temperature on the extraction of heavy metals from soil using the standard method established by Korean Ministry of Environment (KMES). A total of 7 heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in soil samples were extracted at varying digestion temperatures [(66 ± 2.0)℃, (73 ± 1.9)℃, (80 ± 1.3)℃, (85 ± 1.7)℃, (92 ± 2.0)℃, (98 ± 1.7)℃]. As, Cd, Cu, Pb and Zn concentrations remained relatively constant over the temperature range, but Ni and Cr concentrations greatly varied with the digestion temperature. The extent of variation in extraction efficiencies as compared to the concentration obtained at 66℃ was in following order; Ni (7.09% ~ 35.42%) > Cr (4.79% ~ 25.40%) > Zn (3.99% ~ 17.52%) > Cu (2.22% ~ 19.34%) > As (3.54% ~ 8.26%) > Cd (-5.08% ~ 1.08%) > Pb (-4.71% ~ -1.70%). The accuracy for certified reference materials at the digestion temperature of 80 and 85℃ was 98.7% ~ 105.8%. Therefore, digestion temperature of 80℃ ~ 85℃ is suggested to obtain reliable and reproducible data when the standard method by Korean Ministry of Environment is employed to analyze multiple heavy metal components in soil samples.