• Title/Summary/Keyword: Augmented Reduced

Search Result 179, Processing Time 0.036 seconds

A Modular Disturbance Observer-based Cascade Controller for Robust Speed Regulation of PMSM

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1663-1674
    • /
    • 2017
  • This paper deals with the robust speed regulation of a surface-mounted permanent magnet synchronous motor (SPMSM) that is subject to parametric uncertainties and external disturbances. The proposed approach retains a conventional cascade control configuration composed of an outer-loop speed control module and inner-loop current control modules. Baseline proportional-integral (PI) controllers are designed for nominal modular systems without accounting for the uncertainties to set a desired control performance of the closed-loop system. After studied in both frequency and time domains, a reduced-order proportional-integral observer (PIO), as a modular disturbance observer, is incorporated with each control module to maintain the ideal performance of the modules. Theoretical analysis confirms the desired performance recovery of the augmented system with modular PIOs to the nominal system. Comparative computer simulations and experimental results validate the proposed cascade control method for SPMSM speed regulation.

Characteristics of Unsteady Combustion and Combustion Control by Pulsating Mixture Supply

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.8-14
    • /
    • 2001
  • The effects of unsteady combustion are experimentally studied using forced pulsating mixture supply. It was shown that unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations. It may also have desirable performances, from a practical point of view, such as high combustion load, augmented heat transfer, reduced pollutant emissions and so on. We examined the characteristics of unsteady combustion driven by forced pulsating mixture supply in a small duct-combustor with a rearward-facing step. Further, we found its influence on the onset of self-excited combustion oscillations, the possibility of suppressing self-excited combustion oscillations and the reason why the self-excited combustion oscillation was suppressed using the forced pulsating mixture supply, comparing with the steady mixture supply.

  • PDF

Flame Behaviors of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화염거동)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.57-63
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame behaviors of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

  • PDF

A Study on Design Optimization of Mooring Pier using Prestressed Precast Concrete Panel (프리스트레스트 프리캐스트 콘크리트 패널을 이용한 잔교식부두의 최적설계)

  • 조병완;태기호;김용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • Recently, the area of design optimization, especially structural optimization, has been and to be a continuous active area of research. And the design optimizations of port facilities have been achieved by many other civil engineers. But the design optimization of port facilities were limited to the design optimization of the breasting dolphin. This paper invested the design optimization of mooring pier and the foundations of mooring pier was suggested considering the convenience of repair and reinforcement work. The mooring pier devised with prestressed precast concrete panel and rigid frame welded wide flange beam to steel pipe pile. To accomplish the design optimization of mooring pier, the Augmented Lagrangian Multiplier Method(ALM) of ADS(Garret N. Vanderplaats) optimization routine, BFGS method as optimizer and Golden Section Method as one dimensional search were utilized. As a result, thirty percent of material cost for construction was reduced by design optimization. The tensile stress of concrete panel and bottom flage was critical constraints under service load. So, using high strength concrete and steel will be economical. And lots of initial values must be invested to accomplish the design optimization in design procedures.

  • PDF

Reactants Transport Mechanism in Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 반응물 전달기구)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1690-1696
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry are adopted in this calculation. The results show that an initially flat stagnation plane, where an axial velocity is zero, is deformed into a complex-shaped plane, and an initial stagnation point is moved far away from vortex head when the counterflow field is perturbed by the vortex. It is noted that the movement of stagnation point can alter the mechanism of reactants (fuel and oxidizer) fluxes into the flame surface, and then can alter the flame structure.

  • PDF

Effect of Incidence Angle on the Endwall Heat Transfer Within a Turbine Rotor Passage (입사각이 터빈 동익 끝벽 열전달에 미치는 영향)

  • Park Jin Jae;Lee Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.696-702
    • /
    • 2005
  • The effect of incidence angle on the endwall heat (mass) transfer characteristics within a turbine rotor cascade passage has been investigated by employing the naphthalene sublimation technique. The experiments are carried out at the Reynolds number of $2.78{\times}10^5$ for two incidence angles of -5 and 5 dog. The result shows that the incidence angle has a considerable influence on the transport phenomena over the endwall. The positive incidence angle tends to promote development of the pressure-side leg of a leading-edge horseshoe vortex. The endwall thermal load is augmented by 7.5 percents at i = -5 deg but is reduced by 2.5 percents at i = 5 deg, in comparison with that at the design condition.

Steady Aerodynamic Characteristics of a Wing Flying Over a Nonplanar Ground Surface Part II : Channel

  • Han Cheol-Heui;Kim Hak-Ki;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1051-1058
    • /
    • 2006
  • The steady aerodynamic characteristics of a wing flying over a channel are investigated using a boundary-element method. The present method is validated by comparing the computed results with the measured data. Compared with a flat ground surface, the channel fence augmented the lift increase and induced drag reduction. When the fence is lower than the wing height, the gap between the wingtip and the fence does not affect the aerodynamic characteristics of the wing much. When the fence is higher than the wing height, the close gap increased the lift. The induced drag is reduced when the wing is placed near the ground or at the same height as the fence. It is believed that present results can be used in the conceptual design of the high-speed ground transporters flying over the channel.

Dynamics Modeling of Beams with Piezoelectric Resonant Shunting (압전 공진 션트회로가 부착된 빔의 동적 모델링)

  • Park Cheol Hyu;Park Hyeon Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.328.2-328
    • /
    • 2002
  • General modeling of a resonant shunting damper has been made Iron piezoelectric sensor/actuator equation. It is found that an additional damping, which is augmented to a system, is generated by the shunt damping effect The transfer function of the tuned electrical absorber is derived for both series and parallel shunt circuit. The governing equations and associated boundary conditions are derived using Hamilton's Principle. The shunt voltage equation is also derived from the charge generated in PZT due to beam vibration. The frequency response function of the obtained mathematical model is compared with that of the tuned eledtrical absorber and experimental work. The vibration amplitude is reduced about 15 dB at targeted second mode frequency.

  • PDF

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame (대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF