• Title/Summary/Keyword: Augmented Learning

Search Result 336, Processing Time 0.019 seconds

A Korean menu-ordering sentence text-to-speech system using conformer-based FastSpeech2 (콘포머 기반 FastSpeech2를 이용한 한국어 음식 주문 문장 음성합성기)

  • Choi, Yerin;Jang, JaeHoo;Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, we present the Korean menu-ordering Sentence Text-to-Speech (TTS) system using conformer-based FastSpeech2. Conformer is the convolution-augmented transformer, which was originally proposed in Speech Recognition. Combining two different structures, the Conformer extracts better local and global features. It comprises two half Feed Forward module at the front and the end, sandwiching the Multi-Head Self-Attention module and Convolution module. We introduce the Conformer in Korean TTS, as we know it works well in Korean Speech Recognition. For comparison between transformer-based TTS model and Conformer-based one, we train FastSpeech2 and Conformer-based FastSpeech2. We collected a phoneme-balanced data set and used this for training our models. This corpus comprises not only general conversation, but also menu-ordering conversation consisting mainly of loanwords. This data set is the solution to the current Korean TTS model's degradation in loanwords. As a result of generating a synthesized sound using ParallelWave Gan, the Conformer-based FastSpeech2 achieved superior performance of MOS 4.04. We confirm that the model performance improved when the same structure was changed from transformer to Conformer in the Korean TTS.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

Home Economics Teachers' Concern and Perception about Home Economics Education Using the Latest Technology in the Era of the 4th Industrial Revolution (4차 산업혁명 시대의 최신 기술을 활용한 가정과교육에 대한 가정과교사의 관심과 인식)

  • Eui Jung Kim;Won Joon Lee;Do Ha Jeong;Sung Mi Cho;Jung Hyun Chae
    • Human Ecology Research
    • /
    • v.61 no.4
    • /
    • pp.673-686
    • /
    • 2023
  • The purpose of this study was to identify home economics (HE) teachers' concerns about and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution and to reveal whether they differ according to teachers' general background variables. The questionnaire survey method to measure HE teachers' concerns and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution was conducted online using the Google Questionnaire from which 150 responses were received. The main results were as follows. Firstly, HE teachers scored an average of 3.46 out of 5 for the latest technology. Among these interests in the latest technology, interest in "augmented reality and virtual reality technologies" scored the highest at an average of 3.80, while interest in "neural network machine learning" (2.78) was low. HE teacher's concerns about HE education using the latest technologies in the era of the 4th Industrial Revolution were high, with an average score of 4.40. Among these concerns for the latest technology, "concern about the results of HE education using the latest technology" scored the highest at 4.53. HE teachers' anxiety about the latest teaching technology in the era of the 4th Industrial Revolution was moderate, averaging 3.05. The highest form of anxiety was "anxiety about the impact on the job" (4.03) and the lowest was fear of "the disappearance of the teacher's job" (2.50). HE teachers' innovation resistance to the latest teaching technology was low at 2.18. Expectations of the latest technology in HE classes in the era of the 4th Industrial Revolution averaged 3.85, slightly higher than the middle of 3.

Study on the Expression of Sensory Visualization through AR Display Connection - Focusing on Eye Tracking (AR 디스플레이 연결을 통한 감각시각화에 대한 표현 검토)

  • Ma Xiaoyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.357-363
    • /
    • 2024
  • As AR display virtual technology enters public learning life extensively, the way in which reality and virtual connection are connected is also changing. The purpose of this paper is to study the expression between the 3D connection sensory information visualization experience and virtual reality enhancement through the visual direction sensory information visualization experience of the plane. It is analyzed by examining the basic setting method compared to the current application of AR display and flat visualization cases. The scope of this paper is to enable users to have a better experience through the relationship with sensory visualization, centering on eye tracking technology in the four categories of AR display connection design: gesture connection, eye tracking, voice connection, and sensor. Focusing on eye tracking technology through AR display interaction and current application and comparative analysis of flat visualization cases, the geometric consistency of visual figures, light and color consistency, combination of multi-sensory interaction methods, rational content display, and smart push presented sensory visualization in virtual reality more realistically and conveniently, providing a simple and convenient sensory visualization experience to the audience.

Development of an Anomaly Detection Algorithm for Verification of Radionuclide Analysis Based on Artificial Intelligence in Radioactive Wastes (방사성폐기물 핵종분석 검증용 이상 탐지를 위한 인공지능 기반 알고리즘 개발)

  • Seungsoo Jang;Jang Hee Lee;Young-su Kim;Jiseok Kim;Jeen-hyeng Kwon;Song Hyun Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • The amount of radioactive waste is expected to dramatically increase with decommissioning of nuclear power plants such as Kori-1, the first nuclear power plant in South Korea. Accurate nuclide analysis is necessary to manage the radioactive wastes safely, but research on verification of radionuclide analysis has yet to be well established. This study aimed to develop the technology that can verify the results of radionuclide analysis based on artificial intelligence. In this study, we propose an anomaly detection algorithm for inspecting the analysis error of radionuclide. We used the data from 'Updated Scaling Factors in Low-Level Radwaste' (NP-5077) published by EPRI (Electric Power Research Institute), and resampling was performed using SMOTE (Synthetic Minority Oversampling Technique) algorithm to augment data. 149,676 augmented data with SMOTE algorithm was used to train the artificial neural networks (classification and anomaly detection networks). 324 NP-5077 report data verified the performance of networks. The anomaly detection algorithm of radionuclide analysis was divided into two modules that detect a case where radioactive waste was incorrectly classified or discriminate an abnormal data such as loss of data or incorrectly written data. The classification network was constructed using the fully connected layer, and the anomaly detection network was composed of the encoder and decoder. The latter was operated by loading the latent vector from the end layer of the classification network. This study conducted exploratory data analysis (i.e., statistics, histogram, correlation, covariance, PCA, k-mean clustering, DBSCAN). As a result of analyzing the data, it is complicated to distinguish the type of radioactive waste because data distribution overlapped each other. In spite of these complexities, our algorithm based on deep learning can distinguish abnormal data from normal data. Radionuclide analysis was verified using our anomaly detection algorithm, and meaningful results were obtained.

A Development of a Mixed-Reality (MR) Education and Training System based on user Environment for Job Training for Radiation Workers in the Nondestructive Industry (비파괴산업 분야 방사선작업종사자 직장교육을 위한 사용자 환경 기반 혼합현실(MR) 교육훈련 시스템 개발)

  • Park, Hyong-Hu;Shim, Jae-Goo;Park, Jeong-kyu;Son, Jeong-Bong;Kwon, Soon-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2021
  • This study was written to create educational content in non-destructive fields based on Mixed Reality. Currently, in the field of radiation, there is almost no content for educational Mixed Reality-based educational content. And in the field of non-destructive inspection, the working environment is poor, the number of employees is often 10 or less for each manufacturer, and the educational infrastructure is not built. There is no practical training, only practical training and safety education to convey information. To solve this, it was decided to develop non-destructive worker education content based on Mixed Reality. This content was developed based on Microsoft's HoloLens 2 HMD device. It is manufactured based on the resolution of 1280 ⁎ 720, and the resolution is different for each device, and the Side is created by aligning the Left, Right, Bottom, and TOP positions of Anchor, and the large image affects the size of Atlas. The large volume like the wallpaper and the upper part was made by replacing it with UITexture. For UI Widget Wizard, I made Label, Buttom, ScrollView, and Sprite. In this study, it is possible to provide workers with realistic educational content, enable self-directed education, and educate with 3D stereoscopic images based on reality to provide interesting and immersive education. Through the images provided in Mixed Reality, the learner can directly operate things through the interaction between the real world and the Virtual Reality, and the learner's learning efficiency can be improved. In addition, mixed reality education can play a major role in non-face-to-face learning content in the corona era, where time and place are not disturbed.