• Title/Summary/Keyword: Augmented Banyan Network

Search Result 3, Processing Time 0.02 seconds

A Fault Tolerant ATM Switch using a Fully Adaptive Self-routing Algorithm -- The Cyclic Banyan Network (완전 적응 자기 경로제어 알고리즘을 사용하는 고장 감내 ATM 스위치 - 사이클릭 베니안 네트웍)

  • 박재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1631-1642
    • /
    • 1999
  • In this paper, we propose a new fault tolerant ATM Switch and a new adaptive self-routing scheme used to make the switch to be fault tolerant. It can provide more multiple paths than the related previous switches between an input/output pair of a switch by adding extra links between switching elements in the same stage and extending the self-routing scheme of the Banyan network. Our routing scheme is as simple as that of the banyan network, which is based on the topological relationships among the switching elements (SE’s) that render a packet to the same destination with the regular self-routing. These topological properties of the Banyan network are discovered in this paper. We present an algebraic proof to show the correctness of this scheme, and an analytic reliability analysis to provide quantitative comparisons with other switches, which shows that the new switch is more cost effective than the Banyan network and other augmented MIN’s in terms of the reliability.

  • PDF

A High-Performance Fault-Tolerant Switching Network and Its Fault Diagnosis (고성능 결함감내 스위칭 망과 결함 진단법)

  • 박재현
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.335-346
    • /
    • 2004
  • In this paper, we present a high-performance fault-tolerant switching networks using a deflection self-routing scheme, and present fault-diagnosis method for the network. We use the facts: 1) Each stage of the Banyan network is arrayed as the sequences of a Cyclic group of SEs. 2) There is the homomorphism between adjacent stages from a view of self-routing, so that all of each Cyclic group is the subgroup of the Cyclic group in the next stage, and there are factor groups due to such subgroup and homomorphism. We provide high-performance fault-tolerant switching networks of which the all links including augmented links are used as the alternate links detouring faulty links. We also present the fault diagnosis scheme for the proposed switching network that provide multiple paths for each input-output pair.

Multidimensional Ring-Delta Network: A High-Performance Fault-Tolerant Switching Networks (다차원 링-델타 망: 고성능 고장감내 스위칭 망)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, a high-performance fault-tolerant switching network using a deflection self-routing was proposed. From an abstract algebraic analysis of the topological properties of the Delta network, which is a baseline switching network, we derive the Multidimensional Ring-Delta network: a multipath switching network using a deflection self-routing algorithm. All of the links including already existing links of the Delta network are used to provide the alternate paths detouring faulty/congested links. We ran a simulation analysis under the traffic loads having the non-uniform address distributions that are usual in Internet. The throughput of $1024\;{\times}\;1024$ switching network proposed is better than that of the 2D ring-Banyan network by 13.3 %, when the input traffic load is 1.0 and the hot ratio is 0.9. The reliability of $64\;{\times}\;64$ switching network proposed is better than that of the 2D ring-Banyan network by 46.6%.