This paper proposes a data augmentation algorithm to improve the performance of DNN(Deep Neural Network) based speech enhancement. Many deep learning models are exploring algorithms to maximize the performance in limited amount of data. The most commonly used algorithm is the data augmentation which is the technique artificially increases the amount of data. For the effective data augmentation algorithm, we used a formant enhancement method that assign the different weights to the formant frequencies. The DNN model which is trained using the proposed data augmentation algorithm was evaluated in various noise environments. The speech enhancement performance of the DNN model with the proposed data augmentation algorithm was compared with the algorithms which are the DNN model with the conventional data augmentation and without the data augmentation. As a result, the proposed data augmentation algorithm showed the higher speech enhancement performance than the other algorithms.
Background: The dimensions and shape of the forehead determine the esthetics of the upper third of the face. Korean young people consider a broad and smooth, rounded forehead more attractive. As a result, frontal augmentation becomes more popular in patients with dentofacial deformities. Various surgical procedures and materials have been used in frontal augmentation surgery, with associated advantages and disadvantages. Silicone is a good candidate for frontal augmentation. The author presents two cases of esthetic frontal augmentation with a prefabricated silicone implant in female patients with dentofacial deformities. Case presentation: In case 1, a 24-year-old female patient underwent frontal augmentation surgery with simultaneous maxillomandibular and zygomatic osteotomies to correct facial asymmetry. A silicone implant was fabricated preoperatively using a positive template stone mold of her forehead. In case 2, a 23-year-old female patient underwent total facial contouring surgery including frontal augmentation for improved facial esthetics. A computed tomography (CT)-guided rapid prototype (RP) model was used to make the silicone implants. The operative procedure was safe and simple, and the silicone implants were reliable for a larger degree of frontal augmentation. Six months later, both patients had recovered from the surgery and were satisfied with their frontal shape and projection. Conclusions: Frontal augmentation with silicone implants can be an effective adjuvant strategy to improve facial esthetics in patients with a flat and narrow forehead who undergo orthognathic reconstruction or total facial contouring surgery.
Purpose: The aim of augmentation of the alveolar ridge is to restore absorbed alveolar ridges for future implant site or esthetic prosthodontic restoration. The present clinical report describes the anterior maxillary augmentation cases using a soft tissue rotated palatal flap, and considers various problems of before and after surgery. Method: First & second patients were treated by vascularized interpositional periosteal-connective tissue(VIP-CT) flap for horizontal soft tissue augmentation. Especially second patient was progressed with bone grafting at the same time. Third patient was treated by the same flap with bone graft and implant placement in single tooth missing premaxillary area. Result: The obtained horizontal augmentation width measured $0.5{\sim}2.7\;mm$. Conclusion: This technique constitutes a viable approach for augmentation the anterior sector of alveolar ridge with the placement of dental implants. But it needs correct diagnosis preparation and careful surgery skill.
데이터 증강이란 다양한 데이터 변환 및 왜곡을 통해 데이터셋의 크기와 품질을 개선하는 기법으로, 기계학습 모델의 과적합 문제를 해결하기 위한 대표적인 접근법이다. 그러나 심층학습 이미지 생성 모델인 GAN 기반 모델에서 데이터 증강을 적용하면 생성된 이미지에 데이터 변환과 왜곡이 반영되는 증강 누출 문제가 발생하여 생성 이미지의 품질이 하락한다. 이러한 문제를 해결하기 위해 본 논문에서는 데이터 증강의 종류와 수에 관계없이 증강 누출을 방지하는 기법을 제안한다. 증강 누출의 발생 조건을 분석하였으며, 보조적인 데이터 증강 작업 분류기를 GAN 모델에 적용하여 증강 누출을 방지하였다. 정성적 정량적 평가를 통해 제안된 기법을 적용하면 증강 누출이 발생하지 않음을 보이고 추가적으로 생성 이미지의 품질을 향상시키며 기존 기법과 비교하여 발전된 성능을 보임을 입증하였다.
The present paper investigated the correlation between acoustic pressure and heat transfer augmentation in acoustic fields. The acoustic pressure predicted by numerical work and compared with the augmentation ratio of heat transfer coefficient was experimentally measured. Also, particle image velocimetry(PIV) was used for the visualization of velocity vectors and kinetic energy distribution inside liquid region. For the numerical work, SVS programed with Fortran language and based on a coupled FE-BEM was used. Results of the present study, the acoustic pressure is increased by $60\%$ and the largest augmentation of heat transfer about $28\%$ was measured. Finally, the profiles of acoustic pressure is consistent with that of augmentation of heat transfer. It is concluded that a correlation exists between the acoustic pressure and the heat transfer augmentation.
Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
ETRI Journal
/
제44권2호
/
pp.327-338
/
2022
Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.
Communications for Statistical Applications and Methods
/
제30권3호
/
pp.343-354
/
2023
Recently, there have been many improvements in general language models using architectures such as GPT-3 proposed by Brown et al. (2020). Nevertheless, training complex models can hardly be done if the number of data is very small. Data augmentation that addressed this problem was more than normal success in image data. Image augmentation technology significantly improves model performance without any additional data or architectural changes (Perez and Wang, 2017). However, applying this technique to textual data has many challenges because the noise to be added is veiled. Thus, we have developed a novel method for performing data augmentation on text data. We divide the data into signals with positive or negative meaning and noise without them, and then perform data augmentation using k-doc augmentation to randomly combine signals and noises from all data to generate new data.
Reported experimental and computational fluid dynamic (CFD) studies have demonstrated significant power augmentation of diffuser shrouded horizontal axis micro wind turbine compared to bare turbine. These studies also found the degree of augmentation is strongly dependent on the shape and geometry of the diffuser such as length and expansion angle. However study flow field over the rotor blades in shrouded turbine has not received much attention. In this paper, CFD simulations of an experimental diffuser shrouded micro wind turbine have been carried out with the aim to understand the mechanisms underpinning the power augmentation phenomenon. The simulations provide insight of the flow field over the blades of bare wind turbine and of shrouded one elucidating the augmentation mechanisms. From the analysis, sub-atmospheric back pressure leading to velocity augmentation at the inlet of diffuser and lowering the static pressure on blade suction sides have been identified as th dominant mechanisms driving the power augmentation. And effective augmentation was achieved for ${\lambda}$ above certain value. For the case turbine it is ${\lambda}$ greater than ${\approx}2$.
Although several reports have been introduced about dual plane augmentation mammaplasty, the description of periareolar approach dual plane augmentation mammaplasty was few. This article describes specific characteristics, and different classification and techniques for the periareolar dual plane breast augmentation while postoperative scars resulted from inframammary crease approach caused complaints. A total of 124 patients(248 breasts) had periareolar dual plane augmentation surgery from 1998 to 2004. Anatomic implants were used in 43 cases. Most of the patients were satisfied with the outcomes of periareolar dual plane augmentation. Periareolar dual plane augmentation mammaplasty adjusts implant and tissue relationships to ensure adequate soft-tissue coverage while optimizing implant-breast parenchymal dynamics to offer increased benefits and fewer faults compared to a single pocket location in a wide range of breast types with minimal scars. Two types of dual plane classifications are discussed in this study for the periareolar approach exclusively. The boundaries of retroglandular dissection remain constant, as the costal origin of pectoralis major are divided. Type A dual plane implies that the inferior edge of pectoralis muscle lies below the inferior areolar border, and type B dual plane implies that the inferior edge lies above the superior areolar border.
Purpose: Subfascial augmentation mammaplasty was introduced by Dr. Graf in 2000. Subfascial placement of breast implants for augmentation was advocated as an option that has some of the advantages of both the subpectoral and subglandular placement while minimizing the disadvantages of each. The clinical experiences of 23 breast augmentations in the subfascial placement are reported. The indications for this technique are proposed. The incidence of complications is described from clinical experiences and compared with that of other methods. Methods: From January of 2004 through December of 2005, 23 patients underwent periareolar subfascial augmentation mammaplasty. The mean postoperative follow-up time was 8 months. Results: In comparing the results of the subpectoral augmentation group(57 patients) with those of the dual plane(124 patients) and subfascial groups(23 patients), the total rate of complications didn't represented the significant difference. The benefits of this technique include avoiding hematoma(as seen in the dual plane) and muscle action(in the subpectoral), and minimizing postoperative chest pain(inherent to subpectoral), and the ability to correct ptosis. And also this subfascial technique can be used for changing the plane from submuscular to subfascial in case of the reoperations. Conclusion: We're thinking that the periareolar subfascial augmentation mammaplasty would be the very useful tool for the primary and secondary breast augmentations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.