• Title/Summary/Keyword: Auger electron spectroscopy (AES)

Search Result 194, Processing Time 0.023 seconds

티타늄 알루미나이드 합금의 산화연구

  • 이원식;이재희
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.48-48
    • /
    • 1999
  • 티타늄 알루미나이드 합금은 이들의 강도나 고온 특성 때문에 초음속 비행기의 구조물질이나 수소를 연료로 사용하는 비행기의 엔진물질로 각광받고 있다. 그러나 티타늄 알루미나이드 합금들은 이들이 갖는 규칙적인 미세구조로 인하여 실온에서 낮은 연성을 나타내는 단점이 있다. 실온에서 낮은 연성을 갖는 티타늄 알루미나이드 합금의 단점은 텅스텐, 물리브덴, 니오비움, 탄타륨, 바나디움 등의 베타 안정화 물질들을 첨가함으로서 어느정도 극복되고 있다. 따라서 티타늄 알루미나이드 합금이 초음속 비행기의 구조 물질이나 수소를 사용하는 엔진 물질로 사용되기 위해서는 이 물질들의 산화연구가 필수적이다. 지금까지 티타늄의 산화연구에서 알루미늄이나 니오비움의 역할에 대해서는 여러 연구자들이 연구를 한 바 있다. Chaze와 Coddet는 알루미늄이 티타늄에서 산소의 용해도를 감소시키고, Chen과 Rosa는 니오비움이 티타늄에서 산화물 형성율을 낮춘다는 것을 각각 알아냈다. 그러나 지금까지 티타늄 알루미나이드의 산화연구는 충분하지 못했다. 지금까지 티타늄 알루미나이드의 산화연구에서 밝혀진 산화운동학의 내용은 가열온도와 가열시간에 따라 크게 다른 두 개 혹은 그 이상의 산화물을 갖는다는 것이다. 본 연구의 목적은 여러 가지 티타늄 알루미나이드 합금의 산화특성을 밝히는 것이다. 이를 위하여 첫 번째 실험은 실온 공기 중에서 자연적으로 산화된 여러 가지 티타늄 알루미나이드 합금들($\alpha$2,$\beta$,${\gamma}$)을 초고진공($\leq$10-11Torr)속에 넣고, 시료의 온도를 실온에서 100$0^{\circ}C$까지 변화시키면서 AES(Auger Electron Spectroscopy)와 ISS(Ion Scattering Spectroscopy)를 사용하여 각각의 온도에서 여러 가지 시료들의 표면조성을 조사했다. 두 번째 실험은 티타늄 알루미나이드 시료를 고순도 공기(hydrocarbon$\leq$0.1^g , pp m) 중에서 각각 $600^{\circ}C$에서 100$0^{\circ}C$까지 가열하여 산화시켰다. 이 시료의 산화도는 각각의 가열온도에서 가열시간을 변하시키면서 TGA(Thermogravimetric Apparatus)로 측정했다. 실온 공기중에서 자연적으로 산화된 여러 가지 티타늄 알루미나이드 합금들을 초고진공속에 넣어 100$0^{\circ}C$까지 가열한 실험에서는 이들 시료에 포함된 알루미늄의 양에 따라서 표면 조성이 크게 다른 것을 알 수 있었다. 그리고 고순도 공기 중에서 100$0^{\circ}C$까지 가열하여 산화시킨 티타늄 알루미나이드 산화물의 산화기구는 명백한 3단계 포물선 산화의 특성을 나타냈다.

  • PDF

Interaction of Co/Nb Bilayer with $SiO_2$ Substrate ($SiO_2$와 Co/Nb 이중층 구조의 상호반응)

  • Gwon, Yeong-Jae;Lee, Jong-Mu;Bae, Dae-Rok;Gang, Ho-Gyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.956-960
    • /
    • 1998
  • The interfacial reaction between the CoINb bilayer and the $SiO_2$ substrate in the temperature range of $330^{\circ}C$-$800^{\circ}C$ in a vacuum has been investigated by X-ray photoelectron spectroscopy, glancing angle XRD, Auger Electron Spectroscopy and Atomic force microscopy. The Co and Nb were actively interdiffused at $600^{\circ}C$, and the layer inversion completed at $700^{\circ}C$. NbO was formed by interfacial reaction between the Nb interlayer and the $SiO_2$ substrate, while $Nb_20_5$ was formed on the surface by reaction of Nb with oxygen in the ambients. Free Si atoms obtained by the reaction between Nb and $SiO_2$ formed silicides like CoSi and $Nb_5Si_3$ by reacting with Co and Nb remnants. The sheet resistance of the Co/Nb bilayer increased substantially after annealing at $800^{\circ}C$. which is due to the agglomeration of the Co layer to reduce its surface energy.

  • PDF

원자층증착법을 이용한 Y2O3 박막 형성 및 저항 스위칭 특성

  • Jeong, Yong-Chan;Seong, Se-Jong;Lee, Myeong-Wan;Park, In-Seong;An, Jin-Ho;Rao, Venkateswara P.;Dussarrat, Christian;Noh, Wontae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.229.2-229.2
    • /
    • 2013
  • Yttrium oxide (Y2O3)는 band gap이 5.5 eV 정도로 상대적으로 넓고, 굴절상수가 1.8, 유전율이 10~15, Silicon 과의 격자 불일치가 작은 특성을 가지고 있다. 또한 녹는점이 높아 열적으로 안정하기 때문에 전자소자 및 광학소자에 다양하게 응용되는 물질이다. Y2O3 박막은 다양한 방법으로 증착할 수 있는데, 그 방법에는 e-beam evaporation, laser ablation, sputtering, thermal oxidation, metal-organic chemical vapor deposition, and atomic layer deposition (ALD) 등이 있다. ALD는 기판 표면에 흡착된 원자들의 자기 제한적 반응에 의하여 박막이 증착되기 때문에 박막 두께조절이 용이하고 step coverage와 uniformity 측면에서 큰 장점이 있다. 이전에는 Y(thd)3 and Y(CH3Cp)3 와 같은 금속 전구체를 이용하여 ALD를 진행하여, 증착 속도가 낮고 defect이 많아 non-stoichiometric한 조성의 박막이 증착되는 문제점이 있었다. 이번 연구에서는, (iPrCp)2Y(iPr-amd)와 탈이온수를 사용하여 Y2O3 박막을 증착하였다. Y2O3 박막 증착에 사용한 Y 전구체는 상온에서 액체이고 $192^{\circ}C$ 에서 1 Torr의 높은 증기압을 갖는다. Y2O3 박막 증착을 위하여 Y 전구체는 $150^{\circ}C$ 로 가열하여 N2 gas를 이용하여 bubbling 방식으로 공정 챔버 내로 공급하였다. Y2O3 박막의 ALD window는 $250{\sim}350^{\circ}C$ 였으며, Y 전구체의 공급시간이 5초에 다다르자 더 이상 증착 두께가 증가하지 않는 자기 제한적 반응을 확인할 수 있었다. 그리고 증착된 Y2O3 박막의 특성 분석을 위해 Atomic force microscopy (AFM)과 X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) 를 진행하였다. 박막의 Surface morphology 는 매끄럽고 uniform 하였으며, 특히 고체 금속 전구체를 사용했을 때와 비교하여 수산화물이 거의 없는 박막을 얻을 수 있었다. 그리고 조성 분석을 통해 증착된 Y2O3 박막이 stoichiometric하다는 것을 알수 있었다. 또한 metal-insulator-metal (MIM) 구조 (Ru/Y2O3/Ru) 의 resistor 소자를 형성하여 저항 스위칭 특성을 확인하였다.

  • PDF

A Study on the Change of Microstructures by Heat-treatment in Mo-Hf-C Alloys (Mo-Hf-C계 합금의 열처리에 따른 미세조직 변화에 관한 연구)

  • Yoon, Kook-Han;Kim, Hyeong-Ki;Lee, Chong-Mu;Park, Won-Koo;Choi, Ju
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.111-120
    • /
    • 1993
  • Abstract In this study, the Mo-Hf-O ingots containing 0.31-1.14at % Hf and 0.08-1.00at % 0 were prepared by plasma arc melting. The change of microstructure depending on the condition of heat treatmen~ was analysed by optical microscophy, auger electron microscophy, and transmission electron microscophy. Molybdenum powder with the oxygen content of 830ppm was compacted, and then melted. The oxygen content of molybdenum ingots was detected to be 40 -130ppm. As the contents of Hf and 0 increased, the grain size of ingots decreased. When molybdenum igot containing l.14at % Hf and 1.00at % C was heat treated, p-molybdenum carbide in grains was transformed into ${\alpha}$-molybdenum carbide at 130$0^{\circ}C$. Between 140$0^{\circ}C$ and 150$0^{\circ}C$, the precipitation of hafnium carbide was due to the reaction of solute Hf and C, and the hafnium carbide was saturated at grain boundaries at 150$0^{\circ}C$. When the sample was heat treated from 150$0^{\circ}C$ to 170$0^{\circ}C$, Hafnium oxide more stable thermodynamically precipitated both at grain boundaries and in grains after hafnium carbide had been dissolved at grain boundaries.

  • PDF

Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive (하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향)

  • Lee, Dae-Young;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.976-983
    • /
    • 2004
  • In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.

Measurement of hydrogen content in a-C:H films prepared by ECR-PECVD (ECR-PECVD 방법으로 증착된 a-C:H 박막의 수소함량 측정)

  • 손영호;정우철;정재인;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.119-126
    • /
    • 2001
  • Hydrogenated amorphous carbon (a-C:H) films were deposited by ECR-PECVD (electron cyclotron resonance-plasma enhanced chemical vapor deposition) method with deposition conditions such as ECR plasma source power, gas composition of methane and hydrogen, deposition time and substrate bias voltage. The hydrogen content in the films has been measured by ERDA (elastic recoil detection analysis) using 2.5 MeV $He^{++}$ ion beam. From the results of AES (Auger electron spectroscopy), RBS (Rutherford backscattering spectrometry) and ERDA, the composition elements of deposited film were confirmed the carbon atom and the hydrogen atom. It was observed by FTIR (Fourier transform infrared) that the hydrogen contents in the film varied according to the deposition conditions. In deposition condition of substrate bias voltage, the hydrogen contents were decreased remarkably because the amount of dehydrogenation in films was increased as the substrate bias voltage increased. In the rest deposition conditions, the hydrogen contents in the film were measured in the range 45~55%.

  • PDF

The characterization of a barrier against Cu diffusion by C-V measurement (C-V 측정에 의한 Cu 확산방지막 특성 평가)

  • 이승윤;라사균;이원준;김동원;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • The properties of TiN as a barrier against Cu diffusion ere studied by sheet resistance measurement, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and capacitance-voltage(C-V) measurement. The sensitivities of the various methods were compared. Specimens with Cu/TiN/Ti/SiO2/Si structure were prepared by various deposition techniques and annealed at various temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ in 10%H2/90%Ar ambient for hours. As the effectiveness of the barrier property of TiN against Cu diffusion was vanished, the irregular-shaped sports were observed and outdiffused Si were detected on the surface of the Cu thin film. The C-V characteristics of the MOS capacitors varied drastically with annealing temperatures. In C-V measurement, the inversion capacitance decreased at annealing temperature range from $500^{\circ}C$ to $700^{\circ}C$ and increased remarkably at $800^{\circ}C$. These variations may be due to the Cu diffusion through TiN into $SiO_2$ and Si.

  • PDF

Properties of ZnO Films on r-plane Sapphires Prepared by Ultrasonic Spray Pyrolysis (초음파(超音波) 분무(噴霧) 열분해법(熱分解法)으로 r-plane 사파이어 위에 증착(蒸着)된 ZnO 막(膜)의 특성(特性))

  • Ma, Tae-Young;Moon, Hyun-Yul;Lee, Soo-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 1997
  • Zinc oxide(ZnO) thin films were deposited on r-plane sapphires from a solution containing zinc acetate. The films were obtained in a hot wall reactor by the pyrolysis of an aerosol produced by an ultrasonic generator. The crystallinity, surface morphology and composition of the films have been studied using the x-ray diffraction method(XRD) scanning electron microscopy(SEM) and Auger electron spectroscopy (AES) respectively. The influences of the substrate temperature on the crystallinity of the films were studied. Strongly (110) oriented ZnO films were obtained at a substrate temperature of $350^{\circ}C$. The resistivity was increased to above $3{\times}10^{6}{\Omega}{\cdot}cm$ with copper doping and vapor oxidation.

  • PDF

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF