• Title/Summary/Keyword: Au-loaded ZnO

Search Result 1, Processing Time 0.019 seconds

A Comparative Study of Gas Sensing Properties of Au-loaded ZnO and Au@ZnO Core-shell Nanoparticles

  • Majhi, Sanjit Manohar;Dao, Dung Van;Lee, Hu-Jun;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • Au@ZnO core-shell nanoparticles (NPs) were prepared by a simple method followed by heat-treatment for gas sensor applications. The advantage of the core-shell morphology was investigated by comparing the gas sensing performances of Au@ZnO core-shell NPs with pure ZnO NPs and different wt% of Au-loaded ZnO NPs. The crystal structures, shapes, sizes, and morphologies of all sensing materials were characterized by XRD, TEM, and HAADF-STEM. Au@ZnO core-shell NPs were nearly spherical in shape and Au NPs were encapsulated in the center with a 40-45 nm ZnO shell outside. The gas sensing operating temperature for Au@ZnO core-shell NPs was $300^{\circ}C$, whereas it was $350^{\circ}C$ for pure ZnO NPs and Au-loaded ZnO NPs. The maximum response of Au@ZnO core-shell NPs to 1000 ppm CO at $300^{\circ}C$ was 77.3, which was three-fold higher than that of 2 wt% Au-loaded ZnO NPs. Electronic and chemical effects were the primary reasons for the improved sensitivity of Au@ZnO core-shell NPs. It was confirmed that Au@ZnO core-shell NPs had better sensitivity and stability than Au-loaded ZnO NPs.