• Title/Summary/Keyword: Atypical building shape

Search Result 12, Processing Time 0.021 seconds

Current Issues in Wind Engineering: A Review

  • Yong Chul Kim
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2023
  • This paper briefly discusses current issues in wind engineering, including the enhancement of aerodynamic database and AI-assisted design, aerodynamic characteristics of tall buildings with atypical building shapes, application of computation fluid dynamics to wind engineering, evaluation of aerodynamic force coefficients based on a probabilistic method, estimation of tornadic wind speed (JEF scale) and effect of the Ekman Spiral on tall buildings.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

A Study on the Core Characteristics of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 코어 특성에 관한 연구)

  • Jang, In-Sun;Im, Ja-Eun;Park, Sang-Min
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.13-24
    • /
    • 2019
  • The history of tall buildings begins in 1853with the development of elevators. After the Industrial Revolution of the 18th century, the development of high-rise buildings will be carried out in earnest as a means to efficiently use the limited land of cities. The development, which began around Chicago, extended over a long period of time to Asia, maximizing the high competition. However, in the 2000s, not only was it high due to the development of construction and digital technology, but it also became competitive in eco-friendly elements and unstructured forms. High-rise building plans that have gained elemental and morphological diversity are completed by the interrelationships of various plans. Among them, it is important that the core plan has a reasonable approach from the initial planning stage as the basis for the vertical copper plan linking vertically-intensive functions. The cores should be designed to be clear and adequately responsive to changes in the shape of the building. This study aims to provide designers with a reasonable understanding of core planning by identifying core characteristics of irregular high-rise. In particular, we want to analyze the shape of the ground layer core and the relationship between the area and components of the ground layer core. The analysis results are as follows, classified according to the type or use of the building. Of the atypical forms composed of double bending, the TAPER-Curve and TWIST forms are the most distributed, and the plane and core shapes of the ground floor are the most commonly used. Based on the analysis of the validity of the ground floor cores by shape of the cores, the most commonly used forms for core shapes in the planning of the atypical high-rise are square, circular and Oval, and the most efficient oval cores and relatively inefficient ones when planned.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures (비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle (비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.

A Study on the Wind-Induced Response Characteristics of Freeform Shaped Tall Building using FSI Analysis (FSI 해석에 의한 비정형 초고층 빌딩의 풍응답 특성에 관한 연구)

  • Park, Sung Chul;Kim, Hyo Jin;Han, Sang Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2014
  • In this paper, the wind-induced response characteristics of freeform shaped tall building is studied by using FSI analysis. The analytical models are twist shaped ones at representing type of atypical tall building, and this study focused on the relationship between twist angle and wind acceleration. Firstly, 1-way FSI analysis is performed, so maximum lateral displacement of the analytical model for 100 years return period wind speed is calculated, then the elastic modulus of a structure that satisfies the constraints condition is evaluated. And 2-way FSI analysis is carried out. so acceleration of the analytical model for the evaluated modulus of elasticity and arbitrary density is predicted through time history analysis. The basic model is a set of a square shape, height is 400m, slenderness ratio is 8, and twist model is rotated at square model from 0 to 90 degrees at intervals of 15 degrees and from 90 to 360 degrees at intervals of 90 degrees. According to the result of predicting wind acceleration by the shape of each model, the wind vibration effect of square shape model is confirmed to be sensitive more than a twist shape ones.

A Study on the Analysis of the Error Rate of Mixed Mortar Panel for Implementation Free-form Shape (비정형 형상구현을 위한 혼합모르타르 패널의 오차율 분석 연구)

  • Oh, Young-Geun;Jeong, Kyeong-Tae;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Since the third industrial revolution has been started in the 1980s, the form of buildings has been varied and atypical by the development of building technology. Such free-form building has a curved shape unlike the existing standard buildings, and to realize this, it is necessary to manufacture the free-from panel. The shape of the free-form panel must satisfy a limited error ratio compared with the design shape, and the technology to produce free-form panels is very difficult. However, there are many problems such as enormous cost and construction waste generation when implementing free-from construction. Therefore, the development of free-form panel manufacturing technology should be made to solve the problems caused by the free-form construction. In this study, the error rate analysis of the mixed mortar panel was conducted by selecting the proper mixing ratio of the mixed mortar for the shape of the free-form panel.

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.