• Title/Summary/Keyword: Attractions

Search Result 342, Processing Time 0.018 seconds

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Mobility Change around Neighborhood Parks and Green Spaces before and after the Outbreak of the COVID-19 Pandemic (COVID-19 발생 전·후 생활권 공원녹지 모빌리티 변화 분석)

  • Choi, Ga yoon;Kim, Yong gook;Kwon, Oh kyu;Yoo, Ye seul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.101-118
    • /
    • 2023
  • During the COVID-19 pandemic, the utilization rate of neighborhood parks and green spaces increased significantly, and the outbreak served as an opportunity to highlight the values and functions of neighborhood parks and green spaces for urban residents. This study aims to empirically analyze how citizens' movement and the use of neighborhood parks and green spaces changed before and after COVID-19 and examine the social and spatial characteristics that affected these changes. As a research method, first, people's mobility around neighborhood parks and green spaces before and after the COVID-19 pandemic were compared using signal data from telecommunication carriers. Through the analysis of changes in residence time and movement volume, the movement characteristics of citizens after COVID-19 and changes in walking-based park visits were examined. Second, the factors affecting the mobility change in neighborhood parks and green spaces were analyzed. The social and spatial characteristics that affect citizens' visits to neighborhood parks and green spaces before and after COVID-19 were examined through correlation and multiple regression analysis. Subsequently, through cluster analysis, the types of living areas for the post-COVID era were classified from the perspective of the supply and management of neighborhood parks and green spaces services, and directions for improving neighborhood parks and green spaces by type were presented. Major research findings are as follows: First, since the outbreak of COVID-19, activities within 500m of the residence have increased. The amount of stay and walking movement increased in both 2020 and 2021, which means that the need to review the quantitative standards and attractions of neighborhood parks and green spaces has increased considering the changed scope of the walking and living area. Second, the overall number of visits to neighborhood parks and green spaces by walking has increased since the outbreak of COVID-19. The number of visits to neighborhood parks and green spaces centered on the house and the workplace increased significantly. The park green policy in the post-COVID era should be promoted by discovering underprivileged areas, focusing on areas where residential, commercial, and business facilities are concentrated, and improving neighborhood parks and green services in quantitative and qualitative terms. Third, it was found that the higher the level of park green service, the higher the amount of walking movement. It is necessary to use indicators that contribute to improving citizens' actual park green services, such as walking accessibility, rather than looking at the criteria for securing green areas. Fourth, as a result of cluster analysis, five types of neighborhood parks and green spaces were derived in response to the post-COVID era. This suggests that it is necessary to consider the socioeconomic status and characteristics of living areas and the level of park green services required in future park green policies. This study has academic and policy significance in that it has laid the basis for establishing neighborhood parks and green spaces policy in response to the post-COVID era by using various analysis methodologies such as carrier signal data analysis, GIS analysis, and statistical analysis.