• 제목/요약/키워드: Attitude Determination System

검색결과 99건 처리시간 0.034초

인공위성 자세결정 시스템을 위한 등가 오차모델 (Equivalent Error Model for Spacecraft Attitude Determination System)

  • 조윤철;유명종
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.852-860
    • /
    • 2003
  • We introduce the error models for an attitude determination system(ADS) with gyroscopes and stellar sensor. The ADS error models are derived according to the definition of the reference frame and of the attitude error. The equivalent error models applicable to the attitude determination system with large attitude errors are presented. The simulation results show that the proposed error models improve performance of the attitude determination system.

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가 (Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers)

  • 채정근;이동선;강인숙;박찬식
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.

Precision Attitude Determination Design Using Tracker

  • Rhee, Seung-Wu;Kim, Zeen-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.53-57
    • /
    • 1998
  • Star tracker placement configuration is proposed and the properness of the placement configuration is verified for star tracker's sun avoidance angle requirement. Precision attitude determination system is successfully designed using a gyro-star tracker inertial reference system for a candidate LEO spacecraft. Elaborate kalman filter formulation for a spacecraft is proposed for covariance analysis. The covariance analysis is performed to verify the capability of the proposed attitude determination system. The analysis results show that the attitude determination error and drift rate error are good enough to satisfy the mission of a candidate spacecraft.

  • PDF

자장계를 이용한 인공위성의 자세결정 알고리즘 (Spacecraft Attitude Determination Algorithm Using Magnetometer)

  • 민현주;김인중;김진호;박춘배;용기력;이승우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.342-342
    • /
    • 2000
  • We present 3-axis stabilized spacecraft attitude determination algorithm using the magnetometer. The magnetometer has been used as a reliable, light-weight and inexpensive sensor in attitude determination and reaction wheel momentum dumping system. Recent studies have attempted to use the magnetometer when other attitude sensor, such as star tracker, fails. The differences between the measured and computed the Earth's magnetic field components are spacecraft attitude errors. In this paper, we propose extended Kalman filter(EKF) to determine spacecraft attitude with the magnetometer data and gyro-measured body rates. We develop and simulate this algorithm using MATLAB/SIMULINK. This algorithm can be used as a backup attitude determination system.

  • PDF

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

자세측정용 GPS/INS 통합시스템 구성 및 비행 시험 (An Attitude Determination GPS and INS Integration Scheme: Design and Flight Experiment)

  • 김정원;황동환;이상정;박찬식;오상헌;김세환;안이기;이장호
    • 한국항행학회논문지
    • /
    • 제8권2호
    • /
    • pp.112-119
    • /
    • 2004
  • 본 논문에서는 무인기용으로 개발된 자세측정용 GPS/INS 통합 항법 시스템의 설계 개념을 제안하고 비행실험을 통한 성능 평가 결과를 제시한다. 제안하는 시스템은 무인 항공기 자동 비행 시스템의 일부분으로 설계되었고 자세측정용 GPS 수신기, 항법 컴퓨터, 상용의 IMU(Inertial Measurement Unit)로 이루어져 있다. 제안된 항법 시스템은 소형 저가의 구현이 가능하면서도 무인 항공기의 안정된 비행 제어를 위해 요구되는 정확도를 가지는 자세 정보를 제공 할 수 있다. 제안된 시스템을 검증하기 위한 통합 항법 하드웨어와 소프트웨어를 개발하였다. 비행 실험을 통하여 성능 평가를 수행하였다. 비행 실험 결과 개발된 항법 시스템은 GPS 또는 INS 단독보다 정확한 위치, 속도, 자세 정보를 제공하는 것을 확인 할 수 있었고 특히 자세 결과는 기준 자세 시스템과 비교를 통하여 정확도를 확인 할 수 있었다.

  • PDF

Windowed Quaternion Estimator For Gyroless Spacecraft Attitude Determination

  • Kim, Injung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.167.5-167
    • /
    • 2001
  • Single point attitude determination method provides an optimal attitude minimizing the Wahba loss function. However, for the insufficient number of measurement vectors, the conventional single point methods has no unique solution. Thus, we introduce the sequential method to and an optimal attitude minimizing the windowed loss function. In this paper, this function is de ned as the sum of square errors for all measurement vectors within the axed sliding window. For simple implementation, the proposed algorithm is rewritten as a recursive form. Moreover, the covariance matrix is derived and expressed as a recursive form. Finally, we apply this algorithm to the attitude determination system with three LOS measurement sensors.

  • PDF

Analysis of the effects of the baseline length accuracy in integer ambiguity resolution for GPS attitude determination system

  • Lee, Geon-Woo;Son, Seok-Bo;Park, Chan-Sik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1211-1215
    • /
    • 2005
  • In the GPS attitude determination system, the baseline length constraints can be used efficiently to reduce the search space. It is possible by adopting the assumptions that the baseline length doesn't change and the true baseline length is precisely known. But in real situation, the baseline length might be changed by many reasons and it is impossible to measure the true baseline length because there exists measurement error and antenna phase centre movement. In order to analyze the effect of the baseline length accuracy, one needs to know the relation between the accuracy of the baseline length and success rates of the integer ambiguity resolution. In this paper, the effect of the baseline length accuracy to the integer ambiguity resolution in the attitude determination system is analyzed by empirical method. The results show that the margins in the baseline length accuracy is less than a few cm which implies that one should take great cares when applying the attitude determination system to the flexible structures.

  • PDF

무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템 (Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle))

  • 오상헌;이상정;박찬식;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.