• 제목/요약/키워드: Attack Flow

검색결과 613건 처리시간 0.028초

A Numerical Study on Cavitation Suppression Using Local Cooling

  • Zhang, Yuan-Yuan;Sun, Xiao-Jing;Huang, Dian-Gui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.292-300
    • /
    • 2010
  • This study strives to develop an effective strategy to inhibit cavitation inception on hydrofoils by using local cooling technique. By setting up a temperature boundary condition and cooling a small area on the upper surface of a hydrofoil, the fluid temperature around the cooling surface will be decreased and thereby the corresponding liquid saturation pressure will drop below the lowest absolute pressure within the flow field. Hence, cavitation can never occur. In this paper, a NACA0015 hydrofoil at $4^{\circ}$ angle of attack was numerically investigated to verify the effectiveness of the proposed technique. The CFD results indicate that the cooling temperature and the cooling surface roughness are the critical factors affecting the success of such technique used for cavitation suppression.

LEX가 델타형 날개의 와류 유동장에 미치는 영향 (Effects of LEX on the Vortex Field over a Delta Wing)

  • 백승욱;손명환
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of a leading edge extension(LEX) on the vortex flow field over a delta wing by measuring the total pressure distribution in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was $1.76{\times}10^6$. The wing with the LEX experienced a strong interaction between the LEX and wing vortices. As the angle of attack increased, the coupled vortex field of these two vortices maintained its strength and concentricity much better than the vortex field over the wing without the LEX.

제어흐름주소 검증을 이용한 소프트웨어 취약점 공격 대응 기법 (New Defense Method Against Software Vulnerability Attack by Control Flow Address Validation)

  • 최명렬;김기한;박상서
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.343-345
    • /
    • 2004
  • 높은 효율성과 시스템 자원을 세일하게 제어할 수 있는 편리성을 제공하기 위해서 소프트웨어의 안전성에 대한 책임을 개발자가 지게하는 C 언어의 특성으로 인해서 버퍼 오버플로우, 포맷 스트링 기법 등을 이용한 소프트웨어 공격이 계속 나타나고 있다. 지금까지 알려진 소프트웨어 공격 기법의 다수가 버퍼 오버프로우 기법을 이용한 것이어서 지금까지의 연구는 주로 버퍼 오버플로우 공격 방지 및 탐지에 집중되어 있어 다른 공격 기법에 적용하는 데는 한계가 있었다. 본 논문에서는 소프트웨어 공격의 궁극적인 목적이 제어흐름을 변경시키는 것이라는 것을 바탕으로 프로그램의 제어흐름이 정상적인 범위를 벗어날 경우 이를 공격으로 탐지하는 새로운 기법을 제안하고 기존 연구 결과들과 비교하였다.

  • PDF

풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구 (A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD)

  • 임경진
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

A Systematic Treat Model for Software-Defined Networking

  • Zhang, Wenbin;Wu, Zehui;Wei, Qiang;Yuan, Huijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.580-599
    • /
    • 2021
  • Software-Defined Networking (SDN) has three key features: separation of control and forwarding, centralized control, and network programmability. While improving network management flexibility, SDN has many security issues. This paper systemizes the security threats of SDN using spoofing, tampering, repudiation, information disclosure, denial of service, and elevation of privilege (STRIDE) model to understand the current security status of SDN. First, we introduce the network architecture and data flow of SDN. Second, we analyze security threats of the six types given in the STRIDE model, aiming to reveal the vulnerability mechanisms and assess the attack surface. Then, we briefly describe the corresponding defense technologies. Finally, we summarize the work of this paper and discuss the trends of SDN security research.

Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구 (Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method)

  • 최종호;임진식
    • 한국추진공학회지
    • /
    • 제13권3호
    • /
    • pp.41-49
    • /
    • 2009
  • 본 논문은 공기흡입식 추진기관의 고체 로켓 부스터 분리에 관한 수학적 모델링과 시뮬레이션 기법을 기술하였다. 비행체 및 부스터는 하나의 다물체(multi-body)로 고려하였고 부스터는 단지 비행체의 축 방향으로 움직이는 것으로 가정하였다. 비행체 및 부스터의 동적 운동은 Kane 방법에 의해 모델링 되었다. 다양한 부스터 위치에 따라 전체 시스템에 작용하는 공력은 DATCOM 소프트웨어를 사용하여 산출되었으며 부스터 분리 유효 작용면에 작용하는 내부 분리 압력은 일반적인 기체역학 및 Taylor-MacColl 관계식에 의해 산출되었다. 수치적 해석은 Mathworks사의 Matlab이 사용되었다. 해석 결과에 의하면 부스터 분리 동안 마하수 및 받음각 변화 등은 크지 않는 것으로 나타났으며, 실제 시험 장치를 이용한 부스터 분리 시험이 진행될 경우 자세 각 변화, 흡입 유동 특성 등은 무시할 만한 수치임을 확인할 수 있었다.

꼬리날개 조종 유도무기의 주날개-꼬리날개 간섭 현상 (A wing-tail interference for a tail-controlled missile)

  • 김덕현;이대연;강동기;이형진
    • 한국항공우주학회지
    • /
    • 제45권10호
    • /
    • pp.817-824
    • /
    • 2017
  • 꼬리날개 조종 유도무기의 주날개-꼬리날개 간섭 현상에 대한 연구를 수행하였다. 풍동시험 데이터를 이용하여 주날개-꼬리날개 간섭 정도를 산출하였으며 날개간의 간섭 현상이 전체 공력에 미치는 영향을 분석하였다. 성분 시험 결과를 이용하여 downwash angle을 산출하였으며 날개간의 간섭 영향을 받음각에 대한 비율로 나타내었다. 날개간의 간섭현상 발생 시 유동 특성을 살펴보기 위해 수치해석을 실시하였으며 받음각에 대한 vorticity 특성을 비교하였다. 실험적, 수치적 연구를 통해 주날개-꼬리날개 간섭현상이 유도무기의 정안정성에 큰 영향을 미침을 확인하였다.

단일 슬롯 만곡형전개판의 유체역학적 특성에 대한 연구 (The Study on the Hydrodynamic Characteristics of the Single Slot Cambered Otter Board)

  • 박경현;이주희;현범수;배재현
    • 수산해양기술연구
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2001
  • This study deals with the experimental and numerical investigations to design the high performance otter board. Experiment was carried out to determine the most effective slot size of single-slot cambered otter board in the circulation water channel of BAEK KYUNG IND. Co. LTD. Numerical analysis was done by the commercial CFD code, FLUENT, to provide some valuable physical interpretations and finally to design the otter board section by numerical method. The major results are as follows ; 1. In experiment, the maximum lift and drag coefficients of simple cambered type otterboard were 1.41, 0.55, respectively, at the angle of attack $28^\circ$, while those of slot one with slot size 0.02C (C denotes the chord length) were 1.72, 0.42 at the angle of attack $24^\circ$. 2. The hydrodynamic characteristics depending upon slot size shows the greatest at 0.02C of the slot size. 3. Numerical results well visualized the streamlines, pressure fields, and speed vectors of a simple cambered and slot cambered otter board with slot size 0.02C. The slot cambered one with slot size 0.02C was shown that pressure field was distributed moderately on front and back side of otter board. And, the delay and decrease of separation were favorably achieved by flow through slot. 4. Computed result on the pattern of hydrodynamic field and the values of $C_L$ and $C_D$ by the commercial CFD code, FLUENT, show almost the same as those of the experimental result.

  • PDF

Galloping of steepled main cables in long-span suspension bridges during construction

  • An, Yonghui;Wang, Chaoqun;Li, Shengli;Wang, Dongwei
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.595-613
    • /
    • 2016
  • Large amplitude oscillation of steepled main cables usually presents during construction of a long-span bridge. To study this phenomenon, six typical main cables with different cross sections during construction are investigated. Two main foci have been conducted. Firstly, aerodynamic coefficients of a main cable are obtained and compared through simulation and wind tunnel test: (1) to ensure the simulation accuracy, influences of the numerical model's grid size, and the jaggy edges of main cable's cross section on main cable's aerodynamic coefficients are investigated; (2) aerodynamic coefficients of main cables at different wind attack angles are obtained based on the wind tunnel test in which the experimental model is made by rigid plastic using the 3D Printing Technology; (3) then numerical results are compared with wind tunnel test results, and they are in good agreement. Secondly, aerodynamic coefficients of the six main cables at different wind attack angles are obtained through numerical simulation. Then Den Hartog criterion is used to analyze the transverse galloping of main cables during construction. Results show all the six main cables may undergo galloping, which may be an important reason for the large amplitude oscillation of steepled main cables during construction. The flow structures around the main cables indicate that the characteristic of the airflow trajectory over a steepled main cable may play an important role in the galloping generation. Engineers should take some effective measures to control this harmful phenomenon due to the big possibility of the onset of galloping during the construction period.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.