본 논문에서는 CBQ (Class Based Queuing) 알고리즘을 이용하여 DDoS 공격으로부터 메일 서버를 보호할 수 있는 효과적인 방법을 제안한다. 제안하는 방법에서는 메일 서버로 입력되는 트래픽을 중요한 메일 트래픽, 덜 중요한 메일 트래픽, 그 외의 공격의 가능성이 있는 알 수 없는 트래픽으로 구분하고 이들 각 트래픽에 서로 다른 대역폭을 할당함으로써 DDoS 공격 하에서도 정상적인 메일의 송신을 가능하게 한다. 제안하는 방법은 입출력 포트의 대역폭을 별도의 서비스(트래픽 클래스)마다 분산 할당하는 데에 유용한 가중치 사용 라운드 로빈 큐 스케줄링을 이용하는 WFHBD(Weighted Fair Hashed Bandwidth Distribution) 엔진을 고속 스위칭 프로세서를 내장한 임베디드 시스템에서 사용하고 실험을 통하여 DDoS 공격으로부터 메일 서버가 효율적으로 보호될 수 있음을 검증한다.
Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
Wind and Structures
/
제29권6호
/
pp.417-430
/
2019
To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.
Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.
자유류 속도가 40 m/sec 이고 날개의 뿌리시위에 기준한 레이놀즈수가 1.76${\times}$10$^6$인 상태에서 옆미끄럼이 삼각 날개 와류에 미치는 영향을 실험적으로 연구하였다. 받음각 범위는 16$^{\circ}$에서부터 28$^{\circ}$까지 이었으며 옆미끄럼각은 0$^{\circ}$, -10$^{\circ}$, 그리고 -20$^{\circ}$이었다. 옆미끄럼각은 바람쪽과 바람 반대쪽 와류 모두의 강도를 감소시키고, 바람쪽 와류의 붕괴를 촉진시킴이 관찰되었다. 옆미끄럼각 -10$^{\circ}$에서 바람 반대쪽의 와류는 받음각이 증가함에 따라 그 강도가 증가하였다. 이와 같은 옆미끄럼 조건에서 날개 와류의 비대칭적인 발달과 붕괴는 삼각 날개의 롤링모멘트를 어느 특정한 높은 받음각에서 급격히 바뀌게 할 수 있으며, 이는 일종의 롤링 모멘트 불안정성으로 간주할 수 있다.
선박에서 제어판의 역할은 운동을 제어하는데 목적이 있으며 이는 곧 조종성능을 결정하는 중요한 요소이다. 본 연구에서는 플랩타의 성능평가를 위하여 $Re=3.0{\times}10^4$에서 영각에 대응하는 플랩각에 따른 속도 및 에너지 분포를 2-프레임 그레이레벨 상호상관 PIV기법을 이용하여 비교 분석하였다. 또한 영각 10도와 20도에서 전통적인 단동타의 유동특성과 비교하여 플랩타의 성능특성을 평가하였다. 영각 10도에서는 양력, 영각 20도에서는 항력에 의한 측압력을 향상시킬 수 있었다. 영각 10도에서 플랩조작만으로 박리점과 경계층영역의 변화가 가능하였다.
1990년도 중반에 처음 개념이 소개된 이래, 현재까지도 가장 빈번하게 사용되고 매우 심각한 피해를 초래하는 공격기법으로 버퍼 오버플로우(buffer overflow) 취약점을 이용한 공격을 들 수 있다. 쉘코드(shellcode)는 이러한 버퍼 오버플로우 공격에 사용되는 기계어 코드(machine code)로서, 공격자는 자신이 의도한 바대로 수행되는 쉘코드를 작성하고 이를 공격 대상 호스트의 메모리에 삽입, EIP를 조작하여 시스템의 제어 흐름을 가로챌 수 있다. 따라서 버퍼오버플로우를 일으킨 후 쉘코드를 적재하려는 것을 탐지하기 위한 많은 연구들이 수행되어 왔으며, 공격자들은 이런 탐지기법들을 우회하는 기법을 끊임없이 개발해 왔다. 본 논문에서는 이러한 쉘코드 공격 기법 및 방어 기법들에 대해서 살펴보고, 24Bit BMP 이미지에 쉘코드를 은닉시킬 수 있는 새로운 기법을 제안하고자 한다. 이 기법을 통하여 쉘코드를 손쉽게 은닉할 수 있으며, 현재의 다양한 탐지 기법들을 쉽게 우회할 수 있음을 확인할 수 있었다.
Journal of Advanced Marine Engineering and Technology
/
제25권5호
/
pp.1076-1085
/
2001
Experimental investigations of the longitudinal vortices, which are produced by wing type vortex generators set up behind a circular cylinder in a rectangular channel, are presented. When the circular cylinder is set up in the rectangular channel, a horseshoe vortex is formed just upsteam of the circular cylinder. It generates a turbulent wake region behind the circular cylinder. Therefore, the region of the pressure loss behind the circular cylinder in increased and the size of the wake is small. These problems can be achieved by longitudinal vortices which are generated by wing-type vortex generator. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from 20 degree to 45, but the spacing between the vortex generators is fixed 6cm. The 3-dimensional mean velocity measurements are made using a five-hole probe. The vorticity field and streamwise velocity contour are obtained from the velocity field. The following results are obtained. Circulation strength is the maximum value when the angle of attack($\beta$) is $30^{\circ}$, and the vorticity field and streamwise velocity contour in case of $\beta$=$20^{\circ}$ show the trend similar to these in case of $\beta$=$30^{\circ}$, but do not in case of $\beta$=$45^{\circ}$.
The local heat transfer and pressure drops of developed turbulent flows in the convergent channels with square cross-sectional areas along the streamwise distance have been investigated experimentally. Four different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed to the one sided wall only, respectively. The ribbed walls are manufactured with a fixed rib height (e)=10 mm and the ratio of rib spacing (p) to height (e) = 10. The measurement was run within the range of Reynolds numbers from 22,000 to 79,000. The result shows that the increases in the Nusselt numbers for the flow attack angles can be seen in the order of $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$.
Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
Wind and Structures
/
제20권2호
/
pp.327-347
/
2015
This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.
Highly sweep leading edge extensions(LEX) applied to delta wings have greatly improved the subsonic maneuverability of contemporary fighters. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ}$) and six measuring sections of chord length($30{\%},\;40{\%},\;50{\%},\;60{\%},\;70{\%},\;80{\%}$). Sideslip effect in case of the LEX was also studied for two sideslip(yaw) angles($5^{\circ},\;10^{\circ}$) at one angle of attack(20). Distribution of time-averaged velocity vectors and vorticity over the delta wing model were compared along the chord length direction. Quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarify the significance of the LEX existence. Animation presentation in velocity distribution was also implemented to reveal the effect of LEX with wing vortex interaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.