• Title/Summary/Keyword: Attachment Type Spindle

Search Result 3, Processing Time 0.022 seconds

High-speed Machining Technology using CNC Machining Center Equipped with Attachment Type High-Speed Spindle (CNC 공작기계 장착형 고속스핀들을 이용한 고속가공 실용화 기술)

  • Lee, Yong-Chul;Kwak, Tae-Soo;Kim, Gyung-Nyun;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.152-158
    • /
    • 2012
  • A newly developed attachment type high-speed spindle can be easily attached to the conventional CNC machining center to allow high-speed machining with low investment costs. This study has focused on the application of a conventional CNC machining center equipped with an attachment type high-speed spindle. A specimen of plastic mold material has been machined to compare the cutting effectiveness of the high-speed machining center and the conventional machining center with the attachment type high-speed spindle respectively. The rotational accuracy of the spindles are measured by a transmission optic measurement system and the surface roughness of the workpiece in accordance with revolution speed(rpm) of the spindle are investigated respectively. As the experimental results, it was shown that the surface roughness of the machined workpiece was $3.42{\mu}mR_{max}$, $0.46{\mu}mR_a$ in the case of attachment type spindle and $1.81{\mu}mR_{max}$, $0.275{\mu}mR_a$ in the case of the high-speed machining center. Moreover, the mean rotational accuracy was $7.57{\mu}m$ in the case of the attachment type spindle and $7.39{\mu}m$ in the case of the high-speed machining center.

Ultrastructure and Mrphological Fatures of Mcoplasma pneumoniae during Clture Dvelopment (Mycoplasma Pnemoniae 세포의 발달과정 중 미세구조 및 형태학적 특징)

  • Kim, Chi-Kyung;Pfister Robert M.;Somerson Norman L.
    • Korean Journal of Microbiology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1979
  • Mycoplasma pneumoniae strain CL-s attached to broth-covered surfaces was examined sequentially during growth from single cells for morphologic and ultrastructural changes using several different electron microscopic techniques. Changes in morphology revealed both round and spindle shapes and observation of cell transitions suggested some type of morphological cycle. The round to-ovoid cells observed in the early stages of growth appeared to be viable, and morphologically and ultrastructurally different from the spherical fors which were produced during the latter stage of growth. The spindle segments were detected appeared to be structurally the same as the terminal cored structure seen in thin sections and may be a growing point or an attachment site of the cell. A tubular structure was observed in the core of the terminal structure and a microtubule-like element appeared to bridge between some spindle segments. A matrix sunstance was observed around single cells as well in the intercellular space of the colonies prepared by critical point metrical triple-layered cytoplasmic mermbranes, surfaces, of which appeared to be structurally different each other, were observed in young cells, whereas symmetrical and thicker membranes were seen in older cells. Small bodies were found in 4d or older cultures and did not appear to contain any internal structures or an easily detectable unit membrane.

  • PDF

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita;Islam, Md. Ariful;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.669-679
    • /
    • 2016
  • N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.