• Title/Summary/Keyword: Atomic design

Search Result 1,194, Processing Time 0.056 seconds

Development of Human Factors Engineering Program Plan (HFEPP) for MMIS Design of KNGR

  • Cha, Kyung-Ho;Park, Geun-Ok;Seo, Sang-Moon;Cheon, Se-Woo;Bong S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.355-360
    • /
    • 1996
  • Human factors principles and evaluation methodologies are applied to design the MMIS of the KNGR. Human factors issues identified from the previous MMIS design of a nuclear power plant are considered in the development of the HFEPP. To manage human factors issues in the MMIS design of the KNGR, a conceptual Human Factors Issue Tracking System (HFITS) is also considered.

  • PDF

Investigation of transport of radionuclide in a thermal stratification test facility using radiotracer technique

  • Pant, Harish Jagat;Goswami, Sunil;Chafle, Sunil B.;Sharma, Vijay Kumar;Kotak, Vimal;Shukla, Vikram;Mishra, Amitanshu;Gohel, Nilesh C.;Bhattacharya, Sujay
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1449-1455
    • /
    • 2022
  • A radiotracer investigation was carried out in a Thermal Stratification Test Facility (TSTF) with objectives of investigating the dispersion and diffusion of radionuclide and effectiveness of the thermocline to minimize the radionuclide content in the hot water layer. Technetium-99m (99mTc) as sodium pertechnetate was used as a radiotracer in the investigation. Qualitative analysis showed that a thermocline is formed within the TSTF and is effective in preventing the transport of radionuclide from bottom section to the top section of the facility. It was found that the radiotracer injected at the bottom of the pool took about 17.4 h to disperse from bottom to the top of the facility. The results of the investigation helped in understanding the effectiveness of hot water layer and thus to minimize the pool top radiation levels.

Parametric Study on Design Factors of the Shutdown Cooling Heat Exchanger Using the Taguchi Method

  • Kim Seong Hoon;Ryu Seung Yeob;Choi Byung Seon;Yoon Juhyeon;Bae Yoon Yeong;Zee Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • The Taguchi method was applied to investigate the effect of design factors on the performance of the shutdown cooling heat exchanger in the SMART-P. This method provided the simulation matrix for the KDESCENT program and an efficient tool for analyzing the simulation results. Levels of the design factors were selected by the effectiveness-NTU method. From 18 runs with the KDESCENT program, it was found that the performance of the system was greatly influenced by the inlet temperature at the shell side and the mass flow rate of the reactor coolant at the tube side. After applying the Taguchi method, we identified the important design factor that should be controlled and designed carefully. This method provides an efficient way to estimate the influence of each design factor on a system performance.

A Preliminary Safety Analysis for the Prototype Gen IV Sodium-Cooled Fast Reactor

  • Lee, Kwi Lim;Ha, Kwi-Seok;Jeong, Jae-Ho;Choi, Chi-Woong;Jeong, Taekyeong;Ahn, Sang June;Lee, Seung Won;Chang, Won-Pyo;Kang, Seok Hun;Yoo, Jaewoon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1071-1082
    • /
    • 2016
  • Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the invessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

Nuclear Design Characteristics of SMART

  • Lee, Chungchan;Park, Sang-Yoon;Lee, Ki-Bog;Zee, Sung-Quun;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.19-26
    • /
    • 1998
  • Nuclear design bases for System-Integrated Modular Advanced ReacTor(SMART) core are presented. Based on the proposed design bases, a SMART core loading pattern is constructed and its nuclear characteristics are studied. The proposed core loading pattern satisfies 3-year cycle length and soluble boron-free operation requirements at any time during the cycle

  • PDF

Evaluation of New Design Concepts for Steam Generators in Sodium Cooled Liquid Metal Reactors

  • Kim, Seong-O.;Sim Yoonsub;Kim, Eui-kwang.;Myung-Hwan.Wi;Han, Dohee.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.121-132
    • /
    • 2003
  • To reduce the construction cost and enhance the safety of sodium cooled liquid metal reactors, various kinds of new design concepts were evaluated using the KALIMER operation condition. The required equipment sizes were set for plant electricity output to be similar to that of KALIMER. The evaluations were made focusing on the plant performance and implementation practicality. Each design concept was evaluated for the concept itself and design impacts to interfacing systems. Through the evaluation of the concepts, it was found that the most favorable design concept is the integrated steam generator with forced convection using lead bismuth as the intermediate heat transfer fluid between the primary sodium tube and feed water/steam tube in the steam generator.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Design considerations for teleoperation systems operating in gas-tight argon cells

  • Yu, Seungnam;Lee, Jongkwang;Park, Byungsuk;Cho, Ilje;Lee, Hyojik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1717-1726
    • /
    • 2017
  • In the nuclear industry, mechanical engineers spend a significant portion of their time designing equipment such as manipulators, bogies, mechanical grippers, and so on. Some customized designs can be considered as standard mechanical equipment in this area, although it is not unusual to find that an existing design cannot simply be copied from one project to another. Varied performance requirements can dictate that redesign, often quite extensive redesign, is required. However, if something similar has been done before, engineers could use that as a starting point for the new project. In this regard, this study presents several guidelines inspired by previous design knowledge for similar development cases. Moreover, this study presents more detailed suggestions such as design guidelines for an argon-based hot cell atmosphere and design experience for a large-scale practical hot cell facility. Design considerations and case studies dealt with in this study are dedicated to teleoperation manipulators that are used at a large-scale argon cell facility for pyroprocess integrated inactive demonstration (PRIDE), at the Korea Atomic Energy Research Institute. In particular, for case studies to support the suggested recommendations, a fabricated telemanipulator system for PRIDE is introduced, and several kinds of experimental results associated with it are presented.