• Title/Summary/Keyword: Atomic Layer Epitaxy (ALE)

Search Result 14, Processing Time 0.023 seconds

CdTe/ZnTe 이중 양자점의 결합에 따른 광학적 특성

  • Kim, Su-Hwan;Jin, Seong-Hwan;Choe, Jin-Cheol;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.1-197.1
    • /
    • 2015
  • 현재 화합물 반도체 나노구조는 적외선 검출기, 레이저, 발광 다이오드, 단전자 트랜지스터, 태양전지 등과 같은 고효율 광전자 소자에서의 응용을 위해 활발한 연구가 진행 되고 있다. 특히 양자점은 3차원으로 구속되어 있는 상태 밀도를 갖고 있어 레이저 응용 시 낮은 문턱 전류 밀도, 높은 이득, 높은 열적 안정성을 기대되고 있다. 하지만 양자점의 크기가 불규칙적이고 운반자 수집의 한계로 인하여 기대 이하의 온도 안정성을 갖고 있어 이를 극복하기 위해 양자점의 크기와 운반자 수집을 제어하기 위해 다양한 방법이 연구되고 있다. 본 연구에서는 분자 선속 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자 층 교대 성장법(Atomic Layer Epitaxy; ALE)으로 크기가 다른 CdTe/ZnTe 이중 양자점을 ZnTe 장벽층의 두께에 변화하면서 성장 후 광학적 특성을 연구하였다. 저온 광루미네센스 측정(Photoluminescence; PL) 측정 결과 장벽층 두께가 작아질수록 작은 양자점의 광 루미네센스의 세기가 감소하면서 큰 양자점의 세기가 증가하는 것을 관찰할 수 있었는데, 이는 장벽층 두께가 작아질수록 작은 양자점의 운반자들이 큰 양자점으로 이동되는 양이 많아지기 때문이다. 또한 장벽층 두께가 작아질수록 큰 양자점의 반치폭(Full Width at Half Maximum; FWHM)이 단층 양자점의 반치폭 보다 감소하는 것을 관찰 할 수 있었는데 이는 작은 양자점과 결합된 큰 양자점이 작은 양자점의 strain을 받아 크기의 균일함이 증가했기 때문이다. 이와 같은 결과 두 양자점이 결합된 이중 양자점 구조가 단층 양자점의 한계인 운반자 수집과 크기의 균일함을 향상할 수 있는 좋은 구조임을 제시하고 있다.

  • PDF

Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 열적 활성화 에너지와 운반자 동역학

  • Lee, Ju-Hyeong;Choe, Jin-Cheol;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.340-341
    • /
    • 2013
  • 양자점(Quantum dots; QDs)은 단전자 트랜지스터, 레이저, 발광다이오드, 적외선 검출기와 같은 고효율 광전소자 응용을 위해 활발한 연구가 진행되고 있다. II-VI 족 화합물 반도체는 III-V 족 화합물 반도체와 비교했을 때 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지는 우수한 특성을 보이고 있으며 이러한 성질을 가지는 II-VI 족 화합물 반도체 중에서도 넓은 에너지 갭을 가지는 CdTe 양자점은 녹색 영역대의 광전자 소자로서 활용되고 있다. 기존의 CdTe/ZnTe 양자점을 성장하기 위해 ZnTe와 격자부정합이 적은 GaAs 기판을 이용한 연구가 주를 이룬 반면 Si기판을 이용한 연구는 미흡하다. 하지만 Si 기판은 GaAs 기판에 비해 값이 싸고, 여러 분야에 응용이 가능하며 대량생산이 가능하다는 이점을 가지고 있어 초고속, 초고효율 반도체 광전소자의 제작을 가능케 할 것으로 기대된다. 또한 양자점의 고효율 광전소자에 응용을 위해서는 Si 기판 위에 양자점의 크기를 효율적으로 조절하는 연구 뿐 아니라 양자점의 크기에 따른 운반자 동역학에 대한 연구도 중요하다. 본 연구에선 분자선 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자층 교대 성장법(Atomic Layer Epitaxy; ALE)을 이용하여 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 광학적 특성을 연구하였다. 저온 광 루미네센스(PhotoLuminescence; PL) 측정 결과 양자점의 크기가 증가함에 따라 더 낮은 에너지영역으로 피크가 이동하는 것을 확인하였다. 그리고 온도 의존 광루미네센스 측정 결과 양자점의 크기가 증가함에 따라 열적 활성화 에너지가 증가하는 것을 관찰하였는데, 이는 양자점의 운반자 구속효과가 증가하였기 때문이다. 또한 시분해 광루미네센스 측정 결과 CdTe/ZnTe 양자점의 크기가 증가함에 따라 소멸 시간이 긴 값을 갖는 것을 관찰하였는데, 이는 양자점의 크기가 증가함에 따라 엑시톤 진동 세기가 감소하였기 때문이다. 이와 같은 결과 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 열적 활성화 에너지와 운반자 동역학에 대해 이해 할 수 있었다.

  • PDF

ZnTe 완충층 두께에 따른 CdTe/ZnTe 양자점의 운반자 동역학

  • Kim, Su-Hwan;Lee, Ju-Hyeong;Choe, Jin-Cheol;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.305-305
    • /
    • 2014
  • 양자점(Quantum dots)은 3차원적 운반자 구속과 낮은 전류와 높은 온도에서 작동하는 나노 크기의 전기적, 광학적 소자로 응용이 적합하기 때문에 그 특성을 이용한 단전자 트랜지스터, 적외선 검출기, 레이저, LED, 태양전지 등 반도체 소자로의 응용연구가 활발히 진행되고 있다. 특히 양자점의 낮은 임계전류밀도와 높은 차동 이득(differential gain), 그리고 고온에서 작동이 용이하여 양자점 레이저로 활용되고 있다. 이러한 분야에 양자점을 응용하기 위해서는 양자점의 운반자 동역학을 이해하고 양자점의 모양, 크기, 크기 분포와 같은 특성 조절이 필요하다. 또한 기존의 연구들은 III-V족 화합물 반도체 양자점에 대한 연구가 대부분이며, II-VI족으로 구성된 연구가 미흡한 상황이기 때문에 II-VI족 화합물 반도체 양자점에 대한 많은 연구가 필요한 상황이다. II-VI 족 화합물 반도체 양자점은 기존의 III-V 족 양자점보다 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지고 있으며, 이러한 특성을 가지는 II-VI 족 화합물 반도체 양자점 중에서도 CdTe 양자점은 높은 엑시톤 결합에너지와 녹색 스펙트럼 영역을 필요로 하는 광학적 장치들에 응용 가능성이 높기 때문에 더욱 주목받고 있다. 본 연구에서는 분자 선속 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자 층 교대 성장법(Atomic Layer Epitaxy; ALE)으로 CdTe/ZnTe 나노구조에서 ZnTe 완충층의 두께에 따른 운반자 동역학 및 광학적 특성을 연구 하였다. 저온 광루미네센스 측정(Photoluminescence; PL) 을 통하여 ZnTe 완충층 두께가 증가할수록 양자점의 광루미네센스 피크가 낮은 에너지로 이동함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 ZnTe 완충층과 CdTe 양자점의 격자 불일치(lattice mismatch)로 인한 구조 변형력이 감소하고 이에 따라 CdTe 양자점으로 가해지는 변형(Strain)이 감소하여 CdTe 양자점의 크기가 증가했기 때문이다. 그리고 ZnTe 완충층의 두께가 증가할수록 PL 세기가 증가함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 양자 구속 효과로부터 electronic state와 conduction band edge 사이의 에너지 차이의 증가 때문이다. 또한 시분해 광루미네센스 측정 결과 ZnTe의 두께가 증가할수록 양자점의 소멸 시간이 더 길게 측정되었는데, 이는 더 큰 양자점 일수록 엑시톤 오실레이터 강도가 감소하기 때문에 더 긴 소멸 시간을 나타내는 것을 확인할 수 있었다. 결과적으로 본 연구는 ZnTe 두께 변화를 통해 양자점의 에너지 밴드를 제어할 수 있으며, 양자점의 효율 향상을 할 수 있는 좋은 방법임을 제시하고 있다.

  • PDF

CdTe 두께에 따른 CdTe/ZnTe 나노구조의 운반자 동역학과 열적 활성화 에너지

  • Han, Won-Il;Lee, Ju-Hyeong;Choe, Jin-Cheol;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.298-299
    • /
    • 2012
  • 현재 반도체 나노구조는 단전자 트랜지스터, 레이저, LED, 적외선 검출기 등과 같은 고효율 광전자 소자에서의 응용을 위해 활발한 연구가 진행 되고 있다. 이러한 응용 분야를 위한 다양한 종류의 나노구조 성장이 광범위하게 시도 되고 있지만 주로 III-V 족 화합물 반도체에 대한 연구가 주를 이룬 반면 II-VI 족 화합물 반도체에 대한 연구는 아직 미흡하다. 하지만 II-VI 족 화합물 반도체는 III-V 족 화합물 반도체와 비교했을 때 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지는 우수한 특성을 보이고 있으며 이러한 성질을 가지는 II-VI 족 화합물 반도체 중에서도 넓은 에너지 갭을 가지는 CdTe 양자점은 녹색 영역대의 광전자 소자로서 활용되고 있다. 본 연구에서는 분자 선속 에피 성장법(molecular beam epitaxy; MBE)과 원자 층 교대 성장법(atomic layer epitaxy; ALE)으로 CdTe 두께에 따른CdTe/ZnTe 나노구조의 광학적 특성을 연구하였다. 광루미네센스(photoluminescence; PL)를 통해 CdTe/ZnTe 나노구조에서 CdTe 두께에 따른 에너지 밴드와 열적 활성화 에너지를 관찰하였다. 또한 시분해 광루미네센스(Time-resolved PL)를 통해 CdTe 두께에 따른 CdTe/ZnTe 나노구조의 운반자 동역학을 조사하였다. 저온 광루미네센스 측정 결과 CdTe 두께가 증가할수록 각 샘플의 피크는 더 낮은 에너지 영역대로 이동하는 것을 관찰할 수 있다. 1.2 에서 2.0 ML로 증가할 때 광 루미네센스의 작은 적색편이를 관찰할 수 있는데, 이는 CdTe 양자우물에서 양자점으로의 구조적인 전이가 일어남에 따라 구속효과가 증가하였기 때문이다. 또한 2.0 에서 3.6 ML까지 CdTe 두께가 증가할 때 측정된 적색편이 현상은 양자점의 사이즈 증가함에 따른 것이다. 마지막으로 3.6 에서 4.4 ML로 CdTe 두께가 증가할 때 큰 적색편이 현상을 볼 수 있는데 이는 CdTe 양자점에서 양자세선으로의 구조적 전이에 따라 구속효과가 증가하였기 때문이다. 온도 의존 광루미네센스(Temperature-dependent PL) 측정 결과 1.2 와 3.0 ML 두께의 CdTe/ZnTe 나노구조에서 구속된 전자의 열적 활성화 에너지가 18 과 35 meV로 관찰되었다. 3.0 ML CdTe/ZnTe 나노구조에서 가장 큰 열적 활성화 에너지를 갖는 것은 양자점의 균일도가 좋아지고 저차원 나노구조로의 구조적 전이가 일어나면서 운반자 구속효과에 다른 쿨롱 상호작용이 증가하였기 때문이다.

  • PDF