• Title/Summary/Keyword: Atomic Absorption Spectrometry

Search Result 120, Processing Time 0.02 seconds

Analysis of selenium in oil refinery wastewater by hydride generation atomic absorption spectrometry (Hydride Generation Atomic Absorption Spectrometry를 이용한 석유정제폐수중의 selenium 분석)

  • Cheon, Mi-Hee;Kim, Chul;Lee, Hyun-Joo;Kang, Lim-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.399-406
    • /
    • 2003
  • This study was conducted to find out the analysis condition of selenium(Se) in oil refinery wastewater with a high concentration of Se using the atomic absorption spectrometry with hydride generation system (HG-AAS). From various experiments that reduced Se(VI) to Se(IV), the optimum pretreatment condition was determined to be a sample volume of 10 mL, HCl 10 mL, with a 30 min heating time in a water bath. In oil refinery wastewater, as the concentration of organics and constitution became higher, the recovery rates of Se decreased. Therefore, three acid digestion methods ($HNO_3/HClO_4$ digestion, $KMnO_4$ digestion, and microwave acid digestion) were tested on the recovery rates of Se in reference to the digestion of organics, petroleum and oxidation from organic Se(org.), Se(IV) to Se(VI). The experiment results showed that the average recovery rate of Se was the highest in microwave acid digestion, although all of the digestions were more than 90%. In consequence, the pretreatment procedure of microwave digestion followed by HCl addition was the most suitable for selenium analysis in oil refinery wastewater by using HG-AAS.

Direct analysis of steels with a gas-jet assisted glow discharge lamp for atomic absorption spectrometry (글로우방전을 이용한 철강시료의 직접분석법에 관한 연구)

  • Kim, Hyo Jin;Woo, Jin Chun;Lim, Heoung Bin;Moon, Dae Won;Lee, Kwang Woo
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.185-190
    • /
    • 1992
  • A gas-jet assisted glow discharge lamp was attached to a conventional atomic absorption spectrophotometer in the place of a flame burner. To evaluate the accuracy of this method, the certified values and the analyzed values of SRM's were compared and atomic absorption sensitivity for five elements were also obtained. Factors affecting the sensitivity and areas for future improvement are discussed.

  • PDF

Comparison of Blood Lead Concentration Using Graphite Furnace Atomic Absorption Spectrometry (GF-AAs) and Inductively Coupled Plasma-mass Spectrometry (ICP-MS) (흑연로 원자 흡광 광도법과 유도 결합 플라즈마 질량 분석법을 이용한 혈중 납 농도 비교)

  • Kang, Min-Kyung;Kwon, Jung-Yeon;Kim, Byoung-Gwon;Lim, Hyoun-Ju;Seo, Jeong-Wook;Kim, Yu-Mi;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.258-266
    • /
    • 2019
  • Objectives: In this study, blood lead was analyzed using graphite furnace atomic absorption spectrometry (GF-AAs) and inductively coupled plasma mass spectrometry (ICP-MS). We tried to examine the difference and consistency of the analytical values and the applicability of the analytical method. Methods: We selected 57 people who agreed to participate in this study. After confirming the linearity of the calibration standard curves in GF-AAs and ICP-MS, the concentrations of lead in quality control material and samples were measured, and the degree of agreement was compared. Results: The detection limit of the ICP-MS was lower than that of GF-AAs. The coefficient of variation of reference materials was shown to be stable in the ICP-MS and GF-AAs. When the correspondence between the two equipments was verified by bias of the analysis values, a concordance was shown, and approximately 98% of the ideal reference lines were present within ${\pm}40%$ of the deflection. Conclusion: GF-AAs showed high sensitivity to single heavy metal analysis, but it took much time and showed higher detection limit than ICP-MS. Therefore, it would be considered necessary to switch to ICP-MS analysis method, considering that the level of lead exposure is gradually decreasing.

Ultra-trace Arsenic Determination in Urine and Whole Blood Samples by Flow Injection-Hydride Generation Atomic Absorption Spectrometry after Preconcentration and Speciation Based on Dispersive Liquid-Liquid Microextraction

  • Shirkhanloo, Hamid;Rouhollahi, Ahmad;Mousavi, Hassan Zavvar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3923-3927
    • /
    • 2011
  • A noble method for pre-concentration and speciation of ultra trace As (III) and As (V) in urine and whole blood samples based on dispersive liquid-liquid microextraction (DLLME) has been developed. In this method, As (III) was complexed with ammonium pyrrolidine dithiocarbamate at pH = 4 and Then, As (III) was extracted into the ionic liquid (IL). Finally, As (III) was back-extracted from the IL with hydrochloric acid (HCl) and its concentration was determined by flow injection coupled with hydride generation atomic absorption spectrometry (FI-HGAAS). Total amount of arsenic was determined by reducing As (V) to As (III) with potassium iodide (KI) and ascorbic acid in HCl solution and then, As (V) was calculated by the subtracting the total arsenic and As (III) content. Under the optimum conditions, for 5-15 mL of blood and urine samples, the detection limit ($3{\sigma}$) and linear range were achieved 5 ng $L^{-1}$ and 0.02-10 ${\mu}g\;L^{-1}$, respectively. The method was applied successfully to the speciation and determination of As (III) and As (V) in biological samples of multiple sclerosis patients with suitable precision results (RSD < 5%). Validation of the methodology was performed by the standard reference material (CRM).

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife;Ergun, Hasan;Cukurovah, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1976-1980
    • /
    • 2010
  • A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.

Preconcentration and Determination of Copper(II) Using Octadecyl Silica Membrane Disks Modified by 2-Propylpiperidine-1-carbodithioate and Flame Atomic Absorption Spectrometry (2-Propylpiperidine-1-carbodithioate로 수식화한 Octadecyl 실리카 막으로 구리(II)의 예비농축 및 불꽃 원자흡수분광법으로의 정량)

  • Moghimi, Ali;Mossalayi, Haydar
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.148-154
    • /
    • 2008
  • A simple and fast method for extraction and determination of trace amounts of copper(II) ions using octadecyl-bonded silica membrane disks modified with 2-propylpiperidine-1-carbodithioate (PPCD)I and atomic absorption spectrometry (AAS) is introduced. Extraction efficiency and the influence of flow rates, pH, and type and smallest amount of stripping acid were investigated. Maximum capacity of the membrane disks modified with 2 mg of the anthraquinone derivative used was found to be 425μg Cu2+. The limit of detection of the proposed method is 7 ng/ml. The method is applied to the recovery of Cu2+ from different synthetic samples and a spring water sample.

Preconcentration of Copper(II) Using Mesoporous Organo-Silicas and Determination by Flame Atomic Absorption Spectrometry (메조다공성 유기-실리카를 이용한 구리(II)의 예비농축과 불꽃원자 흡수분광법으로의 정량)

  • Moghimi, Ali
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.155-163
    • /
    • 2008
  • .A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(II) ions using mesoporous organo-silicas mesoporous silica and atomic absorption spectrometry is presented. Common coexisting ions did not interfere with the separation and determination. The preconcentration factor was 100 (1 ml elution volume) for a 100 ml sample volume. The limit of detection of the proposed method is 1.0 ng ml-1. The maximum sorption capacity of sorbent under optimum conditions has been found to be 5mg of copper per gram of sorbent. The relative standard deviation under optimum conditions was 2.8% (n=10). Accuracy and application of the method was estimated by using test samples of natural and synthetic water spiked with different amounts of copper(II) ion.

Determination of Trace Amounts of Lead and Copper in Water Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction

  • Shemirani, Farzaneh;Abkenar, Shiva Dehghan;Khatouni, Asieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1133-1136
    • /
    • 2004
  • The need for highly reliable methods for the determination of trace metals is recognized in analytical chemistry and environmental science. A method based on the cloud-point extraction (CPE) technique for the trace analysis of Pb and Cu in water samples is described in this study. The analytes in the initial aqueous solution are complexed with pyrogallol, and 0.1%(w/v) Triton X-114 is added as surfactant. Following phase separation at $50^{\circ}C$, based on the cloud point of the mixture and dilution of the surfactant-rich phase with acidified methanolic solution, the enriched analytes are determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, the enrichment factors of Pb and Cu were found to be 72 and 85, respectively. Under optimum conditions, the preconcentration of 60 mL of samples in the presence of 0.1%(w/v) Triton X-114 permitted the detection of 0.4 ${\mu}gL^{?1}$ of Pb and 0.05 ${\mu}gL^{?1}$ of Cu. The proposed method was applied successfully to the determination of Pb and Cu in water samples.

Preconcentration of Ultra Trace Amounts Bismuth in Water Samples Using Cloud Point Extraction with Na-DDTC and Determination by Electrothermal Atomic Absorption Spectrometry (ET-AAS) (Na-DDTC로 흐림점 추출을 사용한 물시료에서 초미량 비스머스의 예비농축)

  • Moghimi, Ali
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • .A new approach for a cloud point extraction-electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and natriumdiethyldithiocarbaminat (Na-DDTC) was used as a complexing agent. After phase separation at 50oC based on the cloud point separation of the mixture, the surfactant-rich phasen was diluted using tetrahydrofuran (THF). Twenty microliters (20 L) of the enriched solution and 10 l of 0.1% (w/v) Pd(NO3)2 as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 195 was obtained for a sample of only 10 mL. The detection limit was 0.04 ng ml-1 and the analytical curve was linear for the concentration range of 0.04-0.70 ng mL-1. Relative standard deviations were <5%. The method was successfully applied for the extraction and determination of bismuth in water samples.

Study on the extraction mechanism and the optimization of extraction method for Chromium using anion exchangers (음이온 교환체를 이용한 크롬의 추출메카니즘 및 추출방법 최적화에 관한 연구)

  • Kim, S.W.;Kim, D.M.;Kim, Y.S.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.387-393
    • /
    • 1994
  • Quantitative analytical conditions for chromium using solvent extraction followed by atomic absorption spectrometry was studied. Trioctylamine(TOA) in tertiary amine or Trioctylmethylammoniumchloride(TOMAC) in quaternary ammonium salt, both containing octyl group was used as an anion exchangers. Absorbance were measured for the different kinds of acid added and as changing the concentration of acid by graphite furnace atomic absorption spectrometer. The maximum absorbance was obtained at the concentrations of HCl, 0.1M to 0.3M for TOA and 0.03M to 0.1M for TOMAC. Mole ratios over 1:1 of TOA or TOMAC dissolved in MIBK solution to chromium in sample shows optimum extraction efficiency while HCl was added to the MIBK. As a result of scrutinizing the extraction process, the methods employed in this experiment turned out to be better extraction efficiency for chromium, compared to similar extraction methods.

  • PDF