• 제목/요약/키워드: Atom-efficient reaction

검색결과 15건 처리시간 0.021초

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • 이종백;장경순;문경환;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시) 페닐]플루오렌의 원자효율적 합성 (Atom-efficient Preparation of 9, 9'-Bis[4-(2'-hydroxy-3'-acryloyloxypropoxy)phenyl]fluorene)

  • 정혁진;홍성재;서광범;심재진;나춘섭
    • 청정기술
    • /
    • 제17권4호
    • /
    • pp.325-328
    • /
    • 2011
  • 플로렌 구조를 가진 다양한 아크릴계 에폭시 고분자화합물 합성의 전구물질인 9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시)페닐]플루오렌 (3)에 대한 원자 효율적 (atom-efficient) 제조방법을 연구하였다. 사차 암모늄 또는 인산염을 촉매를 사용하여 9, 9'-비스[4-(글라이시딜옥시)페닐]플루오렌 (1)을 아크릴산과 개환 에스터화의 효율적 반응을 통하여 9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시)페닐]플루오렌 (3)을 높은 수율로 얻을 수 있었다. 알킬 사차염의 종류와 반응조건이 반응에 미치는 영향에 대해 조사한 결과, 촉매의 종류가 반응에 큰 영향을 미치는 것으로 나타났다. 브롬화사부틸인 촉매(3 mol%) 존재 하에 플로레닐에폭사이드를 아크릴산과 $110^{\circ}C$에서 반응시켰을 때 원하는 생성물을 90% 수율로 얻을 수 있었다. 이 반응은 반응물질 사용량과 화학적 폐기물의 생성량을 최소화한 청정반응이다.

Si(100) ETCHING BY THERMAL-ENERGY HYDROGEN ATOMS

  • Kang, Joo-Hyun;Jo, Sam-Keun;John G. Ekerdt
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.59-65
    • /
    • 1997
  • Efficient Si(100) etching by thermal H atoms at low substrate temperatures has been achieved. Gas-phase etching product $SiH_4$(g) upon H atom bombardment resulting from direct abstraction of $SiH_3$(a) by impinging H atoms was detected with a quadrupole mass spectrometer over the substrate temperature range of 105-408 K Facile depletion of all surface silyl ($SiH_3$) groups the dissociative adsorption product of disilane ($Si_2H_6$) at 105K from Si(100)2$\times$1 by D atoms and continuous regeneration and removal of $SiD_3$(a) were all consumed. These results provide direct evidence for efficient silicon surface etching by thermal hydrogen bombardment at cryogenic temperatures as low as 105K We attribute the high etching efficiency to the formation and stability of $SiH_3$(a) on Si(100) at lowered surface temperatures allowing the $SiH_3$(a) abstraction reaction by additional H atom to produce $SiH_4$((g).

  • PDF

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • 한국재료학회지
    • /
    • 제33권2호
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

QUENCHING OF TYPE II PHOTOSENSITIZER IN THEIR TRIPLET STATES BY $\alpha$-TOCOPHEROL VIA AN ELECTRON TRANSFER REACTION

  • Boo, Yong-Chool;Lee, Keum-Pyo;Jung, Jin
    • Journal of Photoscience
    • /
    • 제5권3호
    • /
    • pp.125-129
    • /
    • 1998
  • Occurrence of an electron (or H atom equivalent to one electron plus H+) transfer from $\alpha$- tocopherol $\alpha$(TOH) to a number of photosensitizers in theri triplet states were investigated by monitoring the ESR signal of $\alpha$-chromaoxyl radical ($\alpha$(TO.) in ethanolic solutions of $\alpha$TOH and the sensitizers under continuous illumination. Every sensitizer molecule examined, such as protocholorophyllide (Pchl), hematoporphyrin and rose bengal which are generally regarded as efficient type II photosensitizers and thus have long-lived triplet states, was found to actively participate in an electro transfer reaction with $\alpha$TOH even under air-saturation conditions, generating $\alpha$TOH complex as an intermediate in a fashion of Michaelis-Menten type of reaction. For the reaction of $\alpha$TOH with triplet Pchl, the rate law was derived by applying the steady approximation for the binary complex, triplet Pchl-$\alpha$TOH , which turned out to be well consistent with the kinetic data.

  • PDF

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates

  • Kim, Chul-Bae;Lee, Sung-Kyung;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2459-2466
    • /
    • 2010
  • Unfunctionalized biaryl compounds were parallelly and combinatorially prepared by the traceless hydrogenolysis of biarylsulfonates supported on pentaerythritol. The hydrogenolysis using 2-propylmagnesium chloride in the presence of $dppfNiCl_2$ efficiently generated corresponding biaryl derivatives without any memory of the support. The strategy using pentaerythritol as a small soluble support was disclosed to have a potential to combine the benefits of both SPOS and solution-phase reaction with fast reaction rate, facile isolation of intermediates, easy analysis of intermediates and atom economical manner. The novel tetrapodal support is expected to be an efficient substitute for polymeric supports in many circumstances.

인 몰립덴산을 촉매로 이용한 효과적이고 간단한 퀸옥살린의 One-Pot합성 (Phosphomolybdic Acid-Catalyzed Highly Efficient and Simple One-Pot Synthesis of Quinoxaline)

  • Chaskar, Atul;Padalkar, Vikas;Phatangare, Kiran;Langi, Bhushan;Naik, Pallavi
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.727-730
    • /
    • 2009
  • 촉매로서 인 몰립덴산을 이용하여 일련의 퀸옥살린의 유도체를 높은 수율로 합성하였다. 이 방법의 장점은 실내 온도에서 간단한 조작, HPA 촉매의 재사용, 반응단계의 친환경적인 면이다.

Synthesis and Characterization of Low Molecular Weight Poly(methyl acrylate)-b-Polystyrene by a Combination of ATRP and Click Coupling Method

  • Hasneen, Aleya;Kim, Su-Jeong;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.541-546
    • /
    • 2007
  • The combination of atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of well-defined block copolymers. Bromo terminated poly(methyl acrylate) (pMA-Br) was prepared by an ATRP initiator, ethyl-2-bromoisobutyrate (EBiB). Subsequently, the bromine chain end of pMA-Br was converted to an azide group by simple nucleophilic substitution reaction. ${\alpha}-Alkyn-{\omega}-bromo-functionalized$ polystyrene was also synthesized by ATRP using the alkyn-functionalized initiator, propargyl-2-bromoisobutyrate (PgBiB). In both cases, the conversion was limited to a low level to ensure a high degree of chain end functionality. Then the coupling reaction between the azide end group in $pMA-N_3$ and alkyn-functionalized PgBiB-pSt was performed by Cu(I)catalysis. This coupling reaction was monitored by gel permeation chromatography (GPC). The synthesized block copolymer was characterized by FT-IR, $^1H-NMR$ spectroscopy and $^1H-^1H$ COSY correlation spectroscopy.

Design of Single Ion Conductive Solid Polymer Electrolytes Utilizing the Characteristics of the Boron Atom

  • Matsumi, Noriyoshi;Ohno, Hiroyuki
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.275-275
    • /
    • 2006
  • A series of organoboron polymer electrolytes were prepared and their ion conductive characteristics was investigated in detail. Alkylborane type polymer electrolytes prepared by hydroboration polymerization exhibited improve lithium transference number due to efficient anion trapping of alkylborane unit. A lithium borate type polymer/salt hybrid was also successfully prepared by dehydrocoupling polymerization of lithium mesitylhydrorate. Ionic conductivity of single ion conductive polymer/salt hybrid was further improved in the case of comb like polymer/boron stabilized imido anion hybrid prepared via polymer reaction of poly(organoboron halide) with hexylamine and PEO monomethylether and subsequent neutralization with lithium hydride.

  • PDF