• Title/Summary/Keyword: Atom guide

Search Result 9, Processing Time 0.021 seconds

Hollow Beam Atom Tunnel (속 빈 레이저 빔을 이용한 원자 가이드)

  • 송연호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.130-131
    • /
    • 2000
  • One of the more promising proposals for guiding and focusing neutral atoms involves dark hollow laser beams. When the frequency of the laser is detuned to the blue of resonance, the dipole force the atoms feel in the light confines them to the dark core where the atoms can be transported with minimal interaction with the light. The ability of the all-light atom guides to transport large number of ultracold atoms for long distances without physical walls leads to the possibility of a versatile tool for atom lithography, atom interferometry, atomic spectroscopy as well as for transporting and manipulating Bose-Einstein condensates. Furthermore since the atoms transported in all-light atom guides do not come into contact with matter, they can in principle be used to transport antimatter as well. The ability to vary the core size of the hollow beam makes the all-light atom guide potentially useful for focusing neutral atoms. The atoms could be focused as tight as the core size of the hollow beam at its waist. This new focusing scheme, called the atom funnel, would not show spherical and chromatic aberrations that conventional harmonic focusing suffers from. (omitted)

  • PDF

Analysis of Hollow Optical Fiber with Graded-Index Profile (언덕형 Hollow Optical Fiber의 전계 해석)

  • Pee, Joong-Ho;Jeong, Woo-Jin;Kim, Chang-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.493-499
    • /
    • 2006
  • Arbitrary graded-index HOF(Hollow Optical Fibers) are analyzed using the modified Airy function, and the corresponding eigenvalue equation that renders precise results is derived. For graded index HOF, the gradient of an evanescent field in hollow region could be adjusted more sharply than the conventional step-index HOF and the feasibility of more effective atom-guiding is confirmed.

A Method of Structure Analysis for Crystals Containing Semi-heavy Atom (準重原子를 포함하는 結晶의 새로운 構造解析法)

  • Kim, Jik-Tae;Shin, Hyun-So;Koo, Chung-Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.13-17
    • /
    • 1972
  • A method is described to obtain the refined atomic coordinates from two dimensional electron density projections containing partially or completely overlapped semiheavy atoms. Benzidine perchlorate and hydrazonium diphosphate were used in this work as examples. The results show that the suggested method gives an excellent guide.

  • PDF

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

An analysis of the processes of conceptual change through the successive refinement and articulation of student's conceptual framework - Focused on the theoretical discussions - (학생 개념체계의 연속적 세련화와 정교화를 통한 개념 변화 분석 - 이론적 논의를 중심으로 -)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.357-377
    • /
    • 2002
  • This study is for better understanding about the process of students' conceptual change. As a starting point, it is assumed that the process of students' conceptual change can be viewed as the process of the successive refinement and articulation of students' conceptual framework. Based on the theoretical review of conceptual change literature, various processes, which can be involved in the above assumed process, can be found. And also, by analyzing the process of development of scientific knowledge about Planck's blackbody radiation law and Bohr's atom, six types of processes of refinement and articulation of scientific knowledge can be found. It is hoped that these theoretical discussions can guide the direction for obtaining and interpreting the students' real responses during the process of conceptual change.

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation (플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산)

  • Myungjae Kim;Jongwook Kwak;Jiwoong Kim;Kyung-Nam Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

A Study on the 4D Traffic Condition Board based on a Mash-up Technology (Mash-up 기술을 이용한 4D Wall-Map 구성체계)

  • Kim, Joo-Hwan;Yang, Seung-Mook;Nam, Doo-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • Content used in mashups is typically obtained from a third party source through a public interface or API (web services). Other methods of obtaining content for mashups include Web feeds (e.g. RSS or Atom), and screen scraping. A mashup or meshup Web application has two parts: A new service delivered through a Web page, using its own data and data from other sources. The blended data, made available across the Web through an API or other protocols such as HlTP, RSS, REST, etc. There are many types of mashups, such as consumer mashups, data mashups, and Business Mashups. The most common mashup is the consumer mashup, which are aimed at the general public. Examples include Google Maps, iGuide, and RadioClouds. 4D Wall-map display is data mashups combine similar types of media and information from multiple sources into a single representation. This technology focus data into a single presentation and allow for collaborative action among ITS-related information sources.

  • PDF

A study on the prediction of the mechanical properties of Zinc alloys using DV-Xα Molecular Orbital Method (DV-Xα분자궤도법을 이용한 Zn alloy의 기계적 성질 예측)

  • Na, H.S.;Kong, J.P.;Kim, Y.S.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.250-255
    • /
    • 2007
  • The alloying effects on the electronic structures of Zinc are investigated using the relativistic $DV-X{\alpha}molecular$ orbital method in order to obtain useful information for alloy design. A new parameter which is the d obital energy level(Md) and the bonder order(Bo) of alloying elements in Zinc was introduced and used for prediction of the mechanical properties. The Md correlated with the atomic radius and the electronegativity of elements. The Bo is a measure of the strength of the covalent bond between M and X atoms. First-principles calculations of electronic structures were performed with a series of models composed of a MZn18 cluster and the electronic states were calculated by the discrete variational- $X{\alpha}method$ by using the program code SCAT. The central Zinc atom(M) in the cluster was replaced by various alloying elements. In this study energy level structures of pure Zinc and alloyed Zinc were calculated. From calculated results of energy level structures in MZn18 cluster, We found Md and Bo values for various elements of Zn. In this work, Md and Bo values correlated to the tensile strength for the Zn. These results will give some guide to design of zinc based alloys for high temperature applications and it is possible the excellent alloys design.