• Title/Summary/Keyword: Atmospheric river

Search Result 130, Processing Time 0.025 seconds

Real-Time Application of Streamflow Forecast Using Precipitation Forecast (단기 예측강우를 활용한 실시간 유량 예측기법의 적용)

  • Kim, Jin Hoon;Yoon, Won Jin;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.11-23
    • /
    • 2005
  • The objective of this study is to develop a short-term precipitation-streamflow coupling method for real-time river flow forecast. The coupled method is based on the RDAPS model for precipitation and atmospheric simulation and the SFM model for streamflow simulation. The selected study area is the 2,703-km$^2$ Soyang River basin with outlet at Soyang dam site. The rainfall-runoff event from 18 to 24 July 2003 is selected for the performance test of predicted precipitation and streamflow. It can be seen that the simulated basin-scale precipitation from the RDAPS can be useable as an input for SFM hydrologic model. Short-term hydrometeorological simulations using the RDAPS and SFM model were well captured important hydrometeorological characteristics in this study area. It is concluded that atmospheric precipitation forecast would be useful for streamflow forecast.

A Study of the Urban Heat Island in Seoul using Local Analysis System (지역규모 분석 모델을 이용한 서울 도시열섬 특성 연구)

  • Chun, Ji Min;Lee, Seon-Yong;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • A very high resolution weather analysis system (VHRAS) of 50 m horizontal resolution is established based on LAPS. VHRAS utilizes the 3 hourly forecast data of the Unified Model (UM) of the Korea Meteorological Administration (KMA) with the horizontal resolution of 12 km as initial guess fields. The analysis system ingests the automatic weather station (AWS) data as input observations. The analysis system operates every hour for Seoul, Korea region in real time basis. It takes less than 10 minutes for one analysis cycle. The size of grid of the analysis domain is $800{\times}660$, respectively. The analysis results from December 2010 to February 2011 showed that the mean biases of temperature, maximum and minimum temperature were -0.07, 1.6, $0.2^{\circ}C$, respectively. The temperature in the central part of the city revealed relatively higher value than that of the surrounding mountainous areas, which showed a heat island feature. The heat island appears in zonal direction since the central city region is developed along a large river. Along the heat island, the eastern region was warmer than the western region. The warmer temperature in the western part of the heat island was caused by anthropogenic heat change in conjunction with the change of land use. This system will provide more reliable weather data and information in Seoul.

Water Quality Modeling and Response Assessment in the Yellow Sea and the East China Sea (황해 및 동중국해의 수질예측과 응답성 평가)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.445-460
    • /
    • 2012
  • In order to evaluate and predict the environmental impact of the low-trophic-level ecosystem to environmental changes in the Yellow Sea and the East China Sea, an ecological modelling study was undertaken. Simulation results of average distribution patterns and concentrations of water quality factors during the summer by the model were acceptable. Phytoplankton and remineralization rate of organic matter were very important parameters by a sensitivity analysis. Water quality factors showed high values in the estuary of the Yangtze River and in the West and South Sea of Korea and low values in the central area of the Yellow Sea. There is a plume of high values, especially nutrients, off the mouth of the Yangtze that expands or contracts with changes in the discharge strength. Characteristics of responses of water quality factors vary for different scenarios of environmental change, such as land-based pollution sources and atmospheric forcing. It is suggested that changes of light intensity, discharges of input sources, and wind play an important role in the marine ecosystem.

Estimated Nitrogen Discharge by a Mass Balance Approach (질소수지 분석을 통한 질소 배출량의 추정)

  • Choi, E.;Kim, T.H.
    • Journal of Environmental Policy
    • /
    • v.3 no.1
    • /
    • pp.95-117
    • /
    • 2004
  • This study was conducted to estimate nitrogen discharge from Korea (southern part of Korean peninsula) as NPS(non-point source) by mass balance approach; input and output analyses of nitrogen using existing data available. The material flow was sectored into three different activities; agricultural (raising crop and animals), human and natural activities in forest and urban areas. Atmospheric deposition, biological nitrogen fixation, inorganic fertilizers and manures applied, animal feed and imported foodstuffs such as crops, meat and fish were the inputs in this study, while ammonia volatilization, denitrification, human and animal waste generation, crop and meat production, and discharge into river to ocean were the outputs. The estimated total nitrogen input was $1,194.5{\times}10^3$ tons N/year and the river discharge was 408 to $422{\times}10^3$ tons N/year, of which 66 to 71% was from NPS. In detail, the estimated NPS discharges were respectively $8,274\;kg\;N/km^2$/year from agricultural area, $730\;kg\;N/km^2$/year from forest and $7,657\;kg\;N/km^2$/year from the other land areas such as urban and industrial area.

  • PDF

Oxygen Isotope Study on the Wolf River Batholith, Wisconsin in U.S.A. (미국 위시컨신주의 올프리버 저반에 대한 산소동위원소 연구)

  • Sun-Joon Kim;Yuch-Ning Shieh
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.124-133
    • /
    • 1995
  • Oxygen isotope compositions have been determined for the granitic and the related rocks from the Wolf River Ratholith, Wisconsin in U.S.A. Plutons which belong to the differentiation trend are almost identical in oxygen isotope fractionation, and plutons of undifferential sequences also show oxygen isotope compositions similar to each other, which show little isotope fractionations at high temperature range. In oxygen osotope composition, the country rocks (the Penokean plutonic rocks), which is higher by 1~2 permil than the batholith are improbable source of the batholith. However, the assimilation of parent magma of lower ${\delta}^{18}O$ values than the batholith with the Penokean plutonic rocks might have produced the batholith.

  • PDF

A Study on Physiochemical Analysis and Distributions of Coliforms in Major Streams or the Mankyung River (만경강 주요 지천수의 이화학적 검사 및 대장균군의 분포에 관한 연구)

  • 황인담;기노석;정인호;최문철;이재형
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.2
    • /
    • pp.11-23
    • /
    • 1989
  • This study was performed to investigate present water quality and pollution characteristics of them in the basin area of the Mankyung river near Chonju urban stream. In order to obtain the pollution characteristics of this investigation, the physio-chemical water analysis as temperature, pH, DO, BOD, Cd, Cu, Pb and Zn, and coliform group and their correlation analysis were determined from March to August 1988. The main results were summarized as follows 1. Each chemical constituent detected in three streams has the following variation range as pH(6.7-7.3), DO(1.3-8.9 mg/l), BOD(1.6-162.5mg/l) and water temperature was dominated by atmospheric temperature. 2. In three streams, concentration range of heavy metal was Cd N.D.-2.8 $\mu$g/l, Cu 1.1-10.2 $\mu$g/l, Pb 2.1-13.2 $\mu$g/l and Zn 25.6-62.2 $\mu$g/l, and was shown the order of Zn, Pb, Cu and Cd. 3. In the investigation on the bacteriological pollution-in the three streams. 1) The average number of general bacteria contaminated in the Chonju urban stream was $1.7 \times 10^{5}$ numbers/ml, which was higher than $2.6 \times 10^{2}$ numbers/ml, in the Gosan stream and 1.6 $\times$ 10 numbers/ml in the Mankyung river. 2) The average number of total coliform, fecal coliform and fecal streptococcus contaminated in the Chonju urban stream which was the highest polluted site than those of the other sampling sites were respectively $2.1 \times 10^{5}$, $2.1 \times 10^{5}$ and $9.6 \times 10^{4}$ MPN/100ml. 4. Correlation coefficient between GB and TC in the Chonju stream, Gosan stream and Mankyung river was respectively 0.99, 0.96 and 0.99, Correlation coefficient between TC and FC in Chonju stream, Gosan stream and Mankyung river was respectively 0.99, 0.97 and 0.99 and correlation coefficient between FC and TC was respectively 0.99, 0.91 and 0.99. This results mean positively dose relationship between them. 5. The occupied percentage of FC of TC in the Chonju stream, Gosan stream and Mankyung river was respectively 88.1%, 68.4% and 77.9% and the percentage of Tc of TS was respectively 43.5%, 31.6% and 41.4%. These .results was considered indicative of pollution derived from domestic wastes which had been contaminated by the feces of inhabitants and domestic animals.

  • PDF

Analysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images (Landsat 시계열 영상을 이용한 한강 수계 호수 수온과 계절적 성충 현상 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.253-271
    • /
    • 2005
  • We have analyzed surface water temperature and seasonal stratification of lakes in the Han river system using time-series Landsat images and in situ measurement data. Using NASA equation, at-satellite temperature is derived from 29 Landsat-5 TM and Landsat-7 ETM+ images obtained from 1994 to 2004, and was compared with in situ surface temperature on river-type dam lakes such as Paro, Chuncheon, Euiam, Chongpyong, Paldang, and with 10m-depth temperature on lake-type dam lake Soyang. Although the in situ temperature at the time of satellite data acquisition was interpolated from monthly measurements, the number of images with standard deviation of temperature difference (at-satellite temperature - in situ interpolated temperature) less than $2^{\circ}C$ was 24 on which a novel statistical atmospheric correction could be applied. The correlation coefficient at Lake Soyang was 0.915 (0.950 after correction) and 0.951-0.980 (0.979-0.997 after correction) at other lakes. This high correlation implies that there exist a mixed layer in the shallow river-like dam lakes due to physical mixing from continuous influx and efflux, and the daily and hourly temperature change is not fluctuating. At Lake Soyang, an anomalous temperature difference was observed from April to July where at-satellite temperature is $3-5^{\circ}C$ higher than in situ interpolated temperature. Located in the uppermost part of the Han river system and its influx is governed only by natural precipitation, Lake Soyang develops stratification during this time with rising sun elevation and no physical mixture from influx in this relatively dry season of the year.

The Evaluation of on Land Cover Classification using Hyperspectral Imagery (초분광 영상을 이용한 토지피복 분류 평가)

  • Lee, Geun-Sang;Lee, Kang-Cheol;Go, Sin-Young;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • The objective of this study is to suggest the possibility on land cover classification using hyperspectal imagery on area which includes lands and waters. After atmospheric correction as a preprocessing work was conducted on hyperspectral imagery acquired by airborne hyperspectral sensor CASI-1500, the effect of atmospheric correction to a few land cover class in before and after atmospheric correction was compared and analyzed. As the result of accuracy of land cover classification by highspectral imagery using reference data as airphoto and digital topographic map, maximum likelihood method represented overall accuracy as 67.0% and minimum distance method showed overall accuracy as 52.4%. Also product accuracy of land cover classification on road, dry field and green house, but that on river, forest, grassland showed low because the area of those was composed of complex object. Therefore, the study needs to select optimal band to classify specific object and to construct spectral library considering spectral characteristics of specific object.

Comparison of Atmospheric River Detection Algorithms in East Asia (동아시아 대기의 강 탐지 알고리즘 비교)

  • Gyuri Kim;Seung-Yoon Back;Yeeun Kwon;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.399-411
    • /
    • 2023
  • This study compares the three detection algorithms of East Asian summer atmospheric rivers (ARs). The algorithms developed by Guan and Waliser (GW15), Park et al. (P21), and Tian et al. (T23) are particularly compared in terms of the AR frequency, the number of AR events, and the AR duration for the period of 2016-2020. All three algorithms show similar spatio-temporal distributions of AR frequency, centered along the edge of the North Pacific high. The maximum AR frequency gradually shifts northward in early summer as the edge of the North Pacific High expands, and retreats in late summer. However, the detailed pattern and the maximum value differ among the algorithms. When the AR frequency is decomposed into the number of AR events and the AR duration, the AR frequencies detected by GW15 and P21 are equally explained by both factors. However, the number of AR events primarily determine the AR frequency in T23. This difference occurs as T23 utilizes the machine learning algorithm applied to moisture field while GW15 and P21 apply the threshold value to moisture transport field. When evaluating AR-related precipitation, the ARs detected by P21 show the closest relationship with total precipitation in East Asia by up to 60%. These results indicate that AR detection in the East Asian summer is sensitive to the choice of the detection algorithm and can be optimized for the target region.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.