• 제목/요약/키워드: Atmospheric river

검색결과 130건 처리시간 0.024초

서울 수도권 지역의 광화학오존에 관한 연구 (On Surface Ozone Observed in the Seoul Metropolitan Area during 1989 and 1990)

  • 정용승;정재섭
    • 한국대기환경학회지
    • /
    • 제7권3호
    • /
    • pp.169-179
    • /
    • 1991
  • Atmospheric $O_3$ in the biosphere is formed under the favourable meteorological condition, when the primary pollutants, such as $NO_2, HC, CO, CH_4$, etc., react with over constituents. Observed annual average concentrations for 1989 and 1990 were 11.8 and 10.4 ppb, respectively. THe number of days measured ozone over 80 ppb in Seoul were 36 in 1989 and 39 in 1990. In general, monthly maximum values occurred in May and August. In comparison with 1 $\sim$ 2 maxima of $O_3$ distribution in large cities in other countries, it was found that there were 3 $\sim$ 4 maxima in Seoul and its suburbs. Topographic effects, resulted by wind channelling in the Han River valley and by the blocking of air pollutants in the mountain, appeared to produce multiple centres of $O_3$ maxima in Seoul. Surface $O_3$ values were low with decreasing solar radiation, when the cloudiness increased and precipitation occurred. According to 12 cases examined, 2 cases shown here, $O_3$ values exceeding 80 ppb were occurred when the Korean peninsular was under the influence of the backside airflows with high intensity of solar radiation. Occasionally, sea breezes were observed to occur in warm seasons, and the chanelling effect of the Han River valley appeared to increase the general wind (speed) to the east side of Seoul. In this meso-scale situation $O_3$ in downwind is highly correlated with precursors. The sea breeze of 2 $\sim$ 4 m $s^{-1}$ will take 3 $\sim$ 5 hours to transport photochemical precursors for 20 $\sim$ 50 km. In turn the areas of maximum $O_3$ occurrence in Seoul are in the range of meso-scale transport of air pollutants.

  • PDF

대기의 강이 한반도 지역별 강수에 미치는 영향 (Influence of Atmospheric Rivers on Regional Precipitation in South Korea)

  • 권예은;박찬일;백승윤;손석우;김진원;차은정
    • 대기
    • /
    • 제32권2호
    • /
    • pp.135-148
    • /
    • 2022
  • This study investigates the influence of atmospheric river (AR) on precipitation over South Korea with a focus on regional characteristics. The 42-year-long catalog of ARs, which is obtained by applying the automatic AR detection algorithm to ERA5 reanalysis data and the insitu precipitation data recorded at 56 weather stations across the country are used to quantify their relationship. Approximately 51% of the climatological annual precipitation is associated with AR. The AR-related precipitation is most pronounced in summer by approximately 58%, while only limited fraction of precipitation (26%) is AR-related in winter. The heavy precipitation (> 30 mm day-1) is more prone to AR activity (59%) than weak precipitation (5~30 mm day-1; 33%) in all seasons. By grouping weather stations into the four sub-regions based on orography, it is found that the contribution of AR precipitation to the total is largest in the southern coast (57%) and smallest in the eastern coast (36%). Similar regional variations in AR precipitation fractions also occur in weak precipitation events. The regional contrast between the northern and southern stations is related to the seasonal variation of AR-frequency. In addition, the regional contrast between the western and eastern stations is partly modulated by the orographic forcing. The fractional contribution of AR to heavy precipitation exceeds 50% in all seasons, but this is true only in summer along the eastern coast. This result indicates that ARs play a critical role in heavy precipitation in South Korea, thus routine monitoring of ARs is needed for improving operational hydrometeorological forecasting.

지표면의 비균질성이 지표층의 난류수송에 미치는 영향 (Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer)

  • 홍선옥;이영희;임윤진
    • 대기
    • /
    • 제24권3호
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

한경유역에서의 건기와 우기의 변이기간 분석 (An Analysis of the Transition Time between Dry and Wet Period in the Han River Basin)

  • 이재수
    • 한국수자원학회논문집
    • /
    • 제33권3호
    • /
    • pp.375-382
    • /
    • 2000
  • 대유역의 지표면 수문현상은 추계학적 변동에 의해 야기되는 안정된 상태의 변이와 함께 몇 개의 발생빈도가 높은 안정된 상태의 영향을 받기가 쉬운데 그 이유는 지표면과 대기 상호관계의 밀접한 조합과도 관계가 있다. 따라서 각 안정상태에서의 체류기간 즉, 가뭄기나 홍수기의 지속기간이 중요한 연구 과제라 할 수 있으며 본 연구에서는 한강유역에 대하여 안정상태의 평균 변이기간을 분석하였다. 비선형 물수지모형을 한강 유역에 대하여 과거의 자료를 바탕으로 검정하였고 모형을 통한 물리과정의 추계학적 표현과 산정된 모형변수들로부터 안정상태사이의 평균 변이기간이 계산되었다. 본 연구는 안정상태 사이의 변이기간 혹은 거주기간, 즉 시스템이 주어진 안정상태에 머무는 기간(가뭄이나 홍수상태의 지속기간)의 예측과 밀접한 관계가 있다.

  • PDF

PJ 대기패턴과 태풍에 의한 낙동강 유역의 수문학적 극치 사상의 지역적 특성 변화 분석 (Atmospheric Circulation of Pacific-Japan (PJ) and Typhoon-induced Extremes in the Nakdong River Basin)

  • 김종석;윤선권;문영일;이주헌
    • 한국수자원학회논문집
    • /
    • 제45권12호
    • /
    • pp.1309-1319
    • /
    • 2012
  • 한반도를 포함한 동아시아 지역은 여름철에 수문기상학적 극치사상에 취약한 지역이다. 따라서 본 연구에서는 대표적인 동아시아 지역의 대기순환 패턴인 Pacific-Japan (PJ) 패턴을 중심으로 북서태평양 지역의 태풍 활동 특성을 분석하였다. 특히, 한반도에 영향을 미치는 태풍을 중심으로 낙동강 유역의 태풍에 의해 유발된 여름철(June-September) 강수의 지역적 특성 변화를 진단하였다. 분석 결과, 양(+)의 PJ 기간에 발생하는 대기순환패턴의 변화는 태풍의 활동에 보다 유리한 작용을 하는 것으로 나타났다. 한반도에 영향을 미치는 태풍에 대한 진로 분석 결과, 양(+) PJ 기간동안 태풍이 주로 남서쪽으로 향하는 경향이 있으며, 음(-)의 PJ 기간에는 북동쪽으로 향하는 경향이 있는 것으로 나타났다. 태풍 진로의 전향점(recurving location)은 양(+)의 PJ 기간에는 보다 북서쪽에 위치하며, 음(-)의 PJ 기간에는 보다 북동쪽에 치우쳐 있음이 분석되었다. 따라서, 음(-)의 PJ기간 보다 양(+)의 PJ 기간에 태풍의 활동이 활발하며, 낙동강유역에서 태풍에 의한 강수가 통계적으로 유의한 증가패턴이 뚜렷하게 발생하고 있는 것으로 확인되었다.

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석 (Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin)

  • 손태석;이규열;임태효;신현석
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

낙동강 하구역 삼각주 발달에 관한 문헌 고찰 연구 (Delta Development in the Nakdong River Estuary: a Literature Survey)

  • 윤한삼;유창일;강윤구;류청로
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.22-34
    • /
    • 2007
  • We present basic data for developing new research topics and closely examine the existing data on the development and organization of the Nakdong River Estuary Delta by analyzing various studies of the area, including ocean engineering, coastal engineering, ocean environmental engineering, geomorphological, and geological studies. We first defined the general concepts related to the estuary and delta and reviewed the historical development of the Nakdong River Estuary Delta over the past 100 years. We then examined the origin and core elements of the estuary deposits that constitute the delta. In addition, we scrutinized the main factors affecting the development of the delta and analyzed existing research on delta development mechanisms by core researchers. The construction of an estuary barrage is one of the main factors effecting estuarine circulation and has altered the physical oceanic environment, area of deposition, atmospheric environment, and vegetation community of the delta. These factors affect the estuary circulation in turn, altering the delta. Along the Nakdong River, an unsteady-state sandy barrier appears at approximately three times the distance of the wavelength of incident offshore waves, and this terrain forms approximately 10-15 years after reclamation in the interdistributary upper stream and transforms the shoreline. It is necessary to develop a technique to predict terrain change that reproduces the erosion and accumulation of estuarine deposits. To determine the parameters and variables necessary to reproduce this system, continuous on-site monitoring is necessary. The existing research did not fully examine the terrain changes in Nakdong River Estuary or the periodic developmental characteristics. To understand the future process of estuary delta development, it is necessary to establish an integrated management system.

전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구 (Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model)

  • 류영;지희숙;황승언;이조한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.