• Title/Summary/Keyword: Atmospheric releases

Search Result 26, Processing Time 0.018 seconds

Numerical Analysis on the Ventilation System Improvement in Air Shot Blast Room (Air Shot Blast 작업실 내부 환기 시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.861-868
    • /
    • 2022
  • The purpose of this study is to design an effective atmospheric environment system through the design of the dust collection in the air shot room being operated in a domestic shipyard. The ventilation system in the current air shot room mostly uses a dust collecting filter to filter internal particles and releases them in the atmosphere. A conventional design was made too much. In order to prevent an error and draw an optimal design, Computational fluid dynamics (CFD) tried to be applied only to air shot room. In the advanced design technique, computer simulation was conducted to secure basic design data. In order to find the basic design of the ventilation system and the flow field in the air shot room at propeller mold workplace of a shipyard, the CFD was conducted. In the case of Model-1 as a conventional workplace, where air flows in the inlet due to the subatmospheric pressure generated by inhalation of an air blower and flows out to the outlet, a discharge flow rate was somewhat low, and there was the holdup zone in the room. In the case of Model-2 as an improved model, the ventilation system was improved in the Push-Pull type, and the holdup of the internal flow field was improved.

Performing a multi-unit level-3 PSA with MACCS

  • Bixler, Nathan E.;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.386-392
    • /
    • 2021
  • MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 (CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석)

  • Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Importance Analysis of Radiological Exposure by Ground Deposition in Potential Accident Consequences for the Licensing Approval of a Nuclear Power Plant (원전 인허가승인을 위한 사고결말평가에서 지표침적에 의한 피폭의 민감도 분석)

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • In potential accident consequence assessments for the licensing approval of LWRs, the ground deposition of radionuclides released into the environment is not allowed into the models, as recommended in the U. S. Nuclear Regulatory Commission's regulatory guide. Meanwhile, it is allowed into the assessment models for the licensing approval of PHWRs with consideration of more detailed physical processes of radionuclides in the atmosphere. Under these backgrounds, importance of exposure dose by ground deposition was quantitatively evaluated and comprehensively discussed. For potential accidental releases of $^{137}Cs$ and $^{131}I$, total exposure doses were more conservative in case of without consideration of ground deposition than in case of with its consideration. It was because of that the depletion of air concentration resulting from ground deposition is more influential in the contribution to total exposure doses than additional doses from contaminated ground. The exposure doses by the inhalation of contaminated air showed the contribution of more than 90% in total exposure doses, depending on atmospheric stability, release period of radionuclides and distance from a release point. The exposure doses from contaminated ground showed less than 10% at most in contribution of total exposure doses. The ratios of total exposure doses in case of with consideration of deposition to without its consideration for $^{131}I$ were distinct than those for $^{137}Cs$. As the atmosphere is more stable, release duration of radionuclides is longer, distance from a release point is longer, it was more distinct.

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.