• Title/Summary/Keyword: Atmospheric propagation

Search Result 116, Processing Time 0.025 seconds

A Study on Fuzzy Logic based Clustering Method for Radar Data Analysis (레이더 데이터 분석을 위한 Fuzzy Logic 기반 클러스터링 기법에 관한 연구)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity (통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

Report of the Oblique Ionospheric Sounding Results from Korea to Japan

  • Bae, Seok-Hee;Park, Chung-Rim;Wee, Kyu-Jin;Akira Ohtani;Mikitoshi Nagayama;Kiyoshi Igarashi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.1.2-5
    • /
    • 1994
  • Ionospheric sounding experiments have been conducted at RRL (Radio Research Laboratory), Ministry of Communications, using Digisonde 256 since its installation in 1990. Routine observations of the vertical sounding are carried out 48 times (or 39 times) a day, at every 24 hour. In addition, we also made oblique sounding experiments to obtain the real time data of Maximum Usable Frequency (MUF) and detect the anomalous HF propagation, as a part of the joint study between RRL and CRL (Communications Research Laboratory) of Japan. The two stations involved in the study were Anyang (RRL, Korea) and Kokubunji (CRL, Japan). The ionosondes used in both stations were Digisonde 256, developed by ULCAR (University of Lowell, Center for Atmospheric Research), U. S. A. , and the synchronization of time was accomplished with the help of GPS receiver. During most part of the experiments RRL transmitted non-modulated pulses, and CRL received them. The experiment was scheduled from October 25 through October 29, 1993. However, the ionosphere was not developed well enough to conduct the experiment with pre-set operation parameters. The experiment became successful (from 0500 UT to 0800 UT, October 29) only after the operation parameters had been changed, and the continuous ionograms were obtained by CRL at 0718 UT and 0733 UT in October 29, 1993. We believe this type of experiment will ensure the qualitative enhancement of solar-terrestrial physics research and a routine observation of the oblique ionospheric sounding. In this report, we present the results of the fore-mentioned oblique sounding as well as the vertical sounding results obtained by Digisonde 256 at Anyang station of RRL.

  • PDF

Fast Dimming Associated with a Coronal Jet Seen in Multi-Wavelength and Stereoscopic Observations

  • Lee, K.S.;Innes, D.E.;Moon, Y.J.;Shibata, K.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2012
  • We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and the SDO/Atmospheric Imaging Assembly (AIA), Helioseismic and Magnetic Imager (HMI), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption in Ca II images of the SOT before the jet eruption. Using high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period. According to the spectroscopic analysis, the jet's emission changed from blue to red shift with time, implying helical motions in the jet. The STEREO observation, which enabled us to observe the jet projected against the disk, showed that there was a dim loop associated with the jet. We have measured a propagation speed of ~800 km/s for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the HMI photospheric field measured 5 days earlier and the loop densities obtained from EIS Fe XIV line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  • PDF

The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer

  • Zhao, Guang-Yao;Algaba, Juan Carlos;Lee, Sang Sung;Jung, Taehyun;Dodson, Richard;Rioja, Maria;Byun, Do-Young;Hodgson, Jeffrey;Kang, Sincheol;Kim, Dae-Won;Kim, Jae-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Miyazaki, Atsushi;Park, Jong-Ho;Trippe, Sascha;Wajima, Kiyoaki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2017
  • Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previous works it has been shown that non-dispersive (e.g. tropospheric) effects can be calibrated with the frequency phase transfer (FPT) technique. The coherence time can thus be significantly extended. Ionospheric effects, which can still be significant, remain however uncalibrated after FPT, as well as the instrumental effects. In this work, we implement a further phase transfer between two FPT residuals (i.e. so-called FPT2) to calibrate the ionospheric effects based on their frequency dependence. We show that after FPT2, the coherence time at 3 mm can be further extended beyond 8 hours, and the residual phase errors can be sufficiently canceled by applying the calibration of another source, which can have a large angular separation from the target (> $20{\circ}$). Calibrations for all-sky distributed sources with a few calibrators are also possible after FPT2. One of the strengths and uniqueness of this calibration strategy is the suitability for high frequency all-sky survey observations including very weak sources. We discuss the introduction of a pulse calibration system in the future to calibrate the remaining instrumental effects and allowing the possibility of imaging the source structure at high frequencies with FPT2, where all phases are fully calibrated without involving any sources other than the target itself.

  • PDF

A Spatio-Temporal Density Measurement of NO Molecules in Pulsed Barrier Discharge Using Laser Induced Fluorescence (레이져 유기형광법을 이용한 펄스 배리어 방전 공간에서의 NO분자에 대한 시·공간적 밀도변화 측정)

  • Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.160-168
    • /
    • 2010
  • This paper tried to find out NO generation and removal mechanisms in the space of the atmospheric pulsed barrier discharge using laser induced fluorescence method, which is a very effective approach to the measurement of spatio-temporal density of specific molecules. The propagation velocity of the primary streamer reaches about $2.7{\times}10^6$[m/s] and the secondary streamer is produced in the vicinity of positive electrode after the primary streamer finished. In this work, pulse Nd:Yag and Dye lasers are used for generating the specific wavelength of 226[nm], which is possible to excite NO molecules into $A^2{\Sigma}^+{\rightarrow}X^2{\prod}$(0,0) and fluorescence signals as the transition of $A^2{\Sigma}^+{\leftarrow}X^2$(0,2) is measured. For the effective removal of NO molecules in the plasma discharge process, the lower oxygen contents are needed and the influence of secondary streamer for the reduction mechanism of NO molecules is important

A Comparison of Correction Models for the Prediction of Tropospheric Propagation Delay of GPS Signals (GPS 신호의 대류층 지연 예측을 위한 보정모델의 비교)

  • 이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.283-291
    • /
    • 2002
  • Since GPS's SA cancellation, the interest is converged in correction of errors such as atmospheric delay and multipath that weight had been small relatively, which can improve the accuracy of positioning through modelling research. The aim of this study have an extensive comparison of the various tropospheric delay models (Goad&Goodman, A&K, Hopfield and Sasstamoinen) and mapping functions(Niell, Chao, and Marini). Expecially, the tropospheric delay amounts by change of the GPS satellite elevations, and the delay by various combination between zenith delay models and mapping functions, compared and examined. For this, programmed the total delay models and the combined models which can be described as a product of the delay at the zenith and a mapping function. The result of study, especially, as the minimum elevation of included data is reduced under $10^{\circ}$, it was considered to be reasonable that the prediction of tropospheric delay considering combination and mapping character of functions about the transition of the zenith delay to a delay with arbitrary zenith angle.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

Plasma bioscience for medicine, agriculture and hygiene applications

  • Eun Ha Choi;Nagendra Kumar Kaushik;Young June Hong;Jun Sup Lim;Jin Sung Choi;Ihn Han
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.817-851
    • /
    • 2022
  • Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.