• Title/Summary/Keyword: Atmospheric particulate matters

Search Result 120, Processing Time 0.046 seconds

Quantitative Source Estimation of Particulate Matters in Suwon Area Using the Target Transformation Factor Analysis Based on Size Segregation Scheme (입경 분류에 입각하여 목표변환 인자분석법을 이용한 수원지역 분진 오염원의 정량적 기여도 추정)

  • 김동술;이태정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 1993
  • The suspended particulate matters had been collected by a cascade impactor having 9 size fragnated stages for 2 years (Dec. 1989 to Nov. 1991) in Kyung Hee University-Suwon Campus. The particulate matters were then collected on each stage by membrane filters. The weight concentration on each stage was estimated by a microbalance and further chemical element concentrations were determined by an XRF system. The study focused on developing of a receptor model using the TTFA (target transformation factor analysis) to apportion aerosol mass with the 30 ambient data sets. Each data set consists of the 8 size-ranged subdata sets characterized by 13 element variables. Even though a couple of sources could not be identified, three to five sources were extracted from each aerosol size-range, and then 9 statistical source profiles were generated. Finally, source contribution of particulate matters on each size-range could be estimated in Suwon area.

  • PDF

Studies on the Distribution of Heavy Metal Concentrations in Ambient Suspended Particulate Matters Using the X-ray Fluorescence Spectroscopy (X-선 형광분광법을 이용한 대기부유분진중 중금속의 농도분포에 관한 연구)

  • 이태정;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 1992
  • The x-ray fluorescence(XRF) is one of the most convenient and widely used techniques for analyzing trace elements in ambient particulate matters. The objects of the study were to estimate the optimum exposure time using the XRF, to investigate the distributions of heavy metal levels in particulate matters, and finally to study seasonal variation for the concentrations of total suspended particulate matters(TSP) and size fractionated particulate matters. The suspended particulate matters had been collected by a cascade impactor having 9 size fragnated stages for 3 years(Dec. 1988 to Nov. 1991) in Kyung Hee University-Suwon Campus. The particulate matters were then collected on each stage by membrane filters. The weight concentrations were determined by the XRF system. Thus, seasonal variations and relationship between concentration and particle size could be investigated. Resulting distribution was bimodal with the coarse and the fine particle groups minimum occurring around 2.1 to 3.3 $\mu$m as an aerodynamic diameter. To determine optimum exposure time of the XRF for various trace inorganic elements, membrane filters and the NIST standard filters were extensively studied. Using a statistical technique, optimum exposure time was estimated for each trace element and overall elements. The time was then determined as 20 seconds for the XRF system. The concentration of TSP was 123.9$\mum/m^3$ on an arithmatic average. The levels of each inorganic metal were Si 2420.0ng/$m^3$, Fe 977.1ng/$m^3$, and so on. The Pb. Zn, and Cu abounded in the fine mode group, while Ca, Fe, Si, Al, and K in the coarse group. Marked seasonal variation of TSP and metal concentrations was observed. The concentration of heavy metals in the fine mode was highest in winter : on the other hand, that in the coarse mode was highest in spring.

  • PDF

Fabrication and Characteristics of Diesel Particulate Filters (I) (Diesel Particulate Filter의 특성 및 제조방법 (I))

  • Yang, Jin
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.117-129
    • /
    • 1998
  • The atmospheric pollution by diesel emission is mainly attributed to particulate matters and NO$_x$. Their regulation limits have become tighter. This paper reviews the characteristics and the fabrication method of the diesd particulate filter(DPF) which is used to control the particulate matters of diesel emission. First the constituent of particulate matters and the regulation standard are discussed and then the state of the art post-treatment system is reviewed. The materials, the fabrication method and the control of thermal expansion of the ceramic honeycomb filter, which is widely used as the DPF, are also reviewed.

  • PDF

The Study on the Emission Characteristics of HAPs and PM from the Motor Vehicle Paint Facility (자동차 도장시설에서 발생하는 유해대기오염물질 및 미세먼지의 배출특성에 관한 연구)

  • Kim, Han-Na;Bong, Choon-Keun;Kim, Yong-Gu;Jeon, Jun-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.713-721
    • /
    • 2013
  • This study is about emission characteristics of HAPs and particulate matters emitted by spray of paint and organic solvent usually used in vehicle paint facilities. To analyze emission characteristics of HAPs and particulate matters emitted from vehicle paint facilities are calculated based on the measuring emission quantity of pollutants based on the amount of paint used (kg) and unit area ($m^2$) by paint manufacturers (J company, K company, and R company). In cases of paint manufacturers (J, K, and R), average emission factors of VOCs, carbonyl compound, particulate matter, and PAHs per 1 kg of paint were 327.81 g/kg, 5.98 g/kg, 336.70 g/kg, and 0.0078 g/kg respectively. The average emission factors of VOCs, carbonyl compounds, particulate matters, and PAHs by unit area were $171.55g/m^2$, $3.10g/m^2$, $176.27g/m^2$, and $0.0036g/m^2$ respectively.

Size Distribution of Water-Soluble Ionic Components in the Atmospheric Aerosols Collected in Jeju City, Korea (제주시 대기부유부진 중 수용성 이온성분의 입경별 분포특성)

  • Hu Chul-Goo;Song Jeong-Hwa;Lee Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1067-1078
    • /
    • 2004
  • Atmospheric particulate matters were collected by 8-stage non viable cascade impactor from October 2002 to August at Jeju City. Eight water-soluble ionic components $(Na^+,\;NH_{4}_{+},\;K^+,\;Ca{2+},\;Mg^{2+},\;CI^-,\;NO_{3}^-\;and\;SO_{4}^{2-})$ were analyzed by Ion Chromatography. The concentration of particulate matters and eight water-soluble ionic components were determined to investigate their size distributions. Particulate matters exhibited a tri-modal distribution with peak value around $0.9,\;4.0{\mu}m\;and\;9.5{\mu}m.$ In summer, the last peak value was lower than other season values likely due to particulate matter scavenged by rain water. Four ionic components $(Na^+,\;Ca^{2+},\;Mg^{2+}\;and\;CI^-)$ exhibited a bi-modal distribution in the coarse mode whereas three ionic components $(NH_{4}^+,\;K^+\;and\;SO_{4}^{2-})$ in the fine mode, with maximum peak value around $0.9{\mu}m.\;NO_{3}^-$ was found in both the coarse and the fine mode. The enrichment factor (E.F.) of each ionic components was calculated. Based upon E.F., it is considered that $Na^+,\;CI^-,\;and\;K^+$ in coarse paricle mode were delivered form oceanic source, but other components might have other source origins.

Density Distributions of Metallic Compounds in Particulate Matters (粒子狀 物質中 金屬成分의 密度分布)

  • 허문영;김형춘;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF

Mutagenicity of Diesel-Exhaust Particulates

  • Yoo, Young S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.325-331
    • /
    • 1994
  • Organic extracts of diesel- exhaust particulates were analyzed for mutagenicity using Ames Salmonella typhimurium assay system. An experimental diesel microbus used was drived on the chassis dynamometer according to CVS-75 mode. The samples were taken from the mixed gases in a dilution tunnel. With a high-volume air sampler equipped with double filter holders, particulate matters were collected on a teflon-coated glass fiber filter placed behind a activated carbon filter. After ultrasonic extraction with benzene- ethanol and evaporation to dryness, the residue was dissolved in dimethylsulfoxide. Each sample was tested toward 2 strains, TA100 and TA98 by the pre-incubation method in the absence and presence of S-9mix. Average concentration of diesel- exhaust particulates was about 116.6mg/m$^3$, and 44.1~62.2 % to the total weight of particulates, consisted of organic matters. The mutagenicities of diesel- exhaust particulate organic matters were 4,512 and 2,205 revertants/m$^3$ toward TA100 without and with S-9mix, respectively. Those toward TA98 were 13,367 and 3,715 revertants/m$^3$, respectively.

  • PDF

Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD (AERMOD를 이용한 축산 미세먼지, 초미세먼지, 암모니아 배출의 대기확산 영향도 분석)

  • Lee, Se-Yeon;Park, Jinseon;Jeong, Hanna;Choi, Lak-Yeong;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.13-25
    • /
    • 2021
  • The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public's concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 ㎍ m-3, 0.30 ㎍ m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.