• Title/Summary/Keyword: Atmospheric environmental condition

Search Result 254, Processing Time 0.025 seconds

Effect of Surfactant Solution pH on Surfactant-Assisted Remediation (계면활성제를 이용한 오염복원에 있어서 계면 활성제 용액 pH의 효과)

  • Dal-Heui Lee;Rovert D. Cody
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.301-306
    • /
    • 2001
  • Column tests were conducted to investigate the optimal condition of surfactant solution pH that can affect the removal efficiency in surfactant-assisted remediation. Toluene and 1,2,4-trichlorobenzene were chosen as the model hydrophobic substances. Two Iowa soils, Fruitfield sand and Webster clay loam, were leached with solutions of 4%(v/v) sodium diphenyl oxide disulfonate (DOSL, trade name Dowfax 8390), or 4%(v/v) trideceth-19-carboxylic acid (TDCA, trade name Sandopan JA36), or 4% (v/v) octylphenoxypoly ethoxyethanol (OPEE, trade name Triton X100). The test results revealed that a maximum removal of toluene and 1,2,4-trichlorobenzene was obtained at pH 10 of surfactant solution, and maximum recoveries of added toluene (94%) or 1 ,2,4- trichlorobenzene (97 %) were obtained for DOSL surfactant solution in Fruitfield sandy soil column. Increased removal efficiency by pH control of both toluene and 1,2,4trichlorobenzene was 16% and 20% for DOSL with Fruitfild sandy soil, respectively. In addition, the maximum recoveries of added toluene or I ,2,4-trichlorobenzene were 89% and 93% for DOSL surfactant solution in Webster clay loam soil column. The maximum increase of toluene and 1,2,4-trichlorobenzene removal was 26% and 19% for DOSL with Webster clay loam soil, respectively. These experimental results indicate that maintaining a high pH surfactant solution in surfactant-assisted remediation is desirable for efficient removal of NAPLs from contminated soils.

  • PDF

A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula (한반도 지역 산불 발생 위험도 예측에 TVDI 적용 가능성 고찰)

  • Kim, Kwang Nyun;Kim, Seung Hee;Won, Myoung Soo;Jang, Keun Chang;Choi, Won Jun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1197-1208
    • /
    • 2019
  • Wildfire is a major natural disaster affecting socioeconomics and ecology. Remote sensing data have been widely used to estimate the wildfire danger with an advantage of higher spatial resolution. Among the several wildfire related indices using remote sensing data, Temperature Vegetation Dryness Index (TVDI) assesses wildfire danger based on both Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Although TVDI has physical advantages by considering both weather and vegetation condition, previous studies have shown TVDI does not performed well compare to other wildfire related indices over the Korean Peninsula. In this study we have attempted multiple modification to improve TVDI performance over the study region. In-situ measured air temperature was employed to increase accuracy, regression line was generated using monthly data to include seasonal effect, and TVDI was calculated at each province level to consider vegetation type and local climate. The modified TVDI calculation method was evaluated in wildfire cases and showed significant improvement in wildfire danger estimation.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

A Study on the Monthly Characteristics of Solar UV Radiation in Gosan, Jeju (제주도 고산지역 자외선복사의 월변화 특성과 원인 고찰)

  • Kim, Young-Ah;Choi, Wookap
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.291-300
    • /
    • 2017
  • The monthly-mean irradiance of ultra violet (UV)-B and UV-A observed from 2005 to 2014 and 2012 to 2014, respectively, at noon in Gosan, Jeju, South Korea are analyzed. We compare cloudiness, total ozone, visibility, and relative humidity with an emphasis on the four months from May to August (MJJA), which shows the largest UV radiation. While the incoming UV-B radiation at the top of the atmosphere in Gosan is the largest in June due to the small solar zenith angle, the observed surface UV-B shows an unexpected smaller value in June than those in May, July or August. In June, the meteorological conditions affecting Gosan are completely dominated by cloudiness and thus, frequent overcast seems to determine the minimum UV-B. Another important UV-determining factor is the total ozone, which exhibits a monotonic decrease during MJJA without agreeing to the characteristic feature of UV. The ratio of UV-B to UV-A is not generally influenced by cloudiness. Thus, the ratio is a useful indicator of atmospheric turbidity showing larger values for increasing visibility, except in June. A simple model has been used to estimate surface UV by using the observed ozone and visibility in the cloudless condition. The result shows that UV has the lowest value in June with small variation during MJJA. Model estimation also shows that the different characteristic features observed in July between surface UV-B and UV-A is the result of less absorption of UV-B by ozone than that of UV-A by a smaller amount of total ozone.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Effect of Surfactant Concentration and pH on Surfactant-Enhanced Remediation in lowa Soil Contaminated by TCB (삼염화벤젠으로 오염된 아이오와토양의 복원시 계면활성제의 농도와 pH의 영향)

  • Dal-Heui Lee;Robert D. Cody
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • Column tests were carried out to examine the effect of surfactant solution conditions on surfactant-enhanced remediation of contaminated soil. The selected conditions of the surfactant solution were concentration and pH. 1,2,4-trichlo-robenzene (TCB) was chosen as the model hydrophobic organic substances. Sodium diphenyl oxide disulfonate (DOSL) and octylphenoxypoly ethoxyethanol (OPEE) surfactants were selected for this study. Two Iowa soils, Fruitfield sand and Webster clay loam, were leached with surfactant solution. The test results revealed that an optimum condition was achieved for 4 %(v/v) of concentration and 10 of pH, respectively. The maximum recoveries of added TCB (93-98%) were obtained when optimal conditions of each surfactant solution parameter were simultaneously met. The optimum conditions of these parameters may be useful for surfactant-assisted remediation in soil contaminated by TCB.

Development of Method to Predict Source Region of Swell-Like High Waves in the East Sea (동해안 너울성 고파의 발생역 추정법 개발)

  • Ahn, Suk Jin;Lee, Changhoon;Kim, Shin Woong;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.212-221
    • /
    • 2016
  • In this study, characteristics of swell-like high waves in the East Sea were analyzed using observed wave data and predicted meteorological data from the National Oceanic and Atmospheric Administration (NOAA). And, the wave prediction system using the data from the NOAA has been established. Furthermore, the applicability of the system has been verified by comparing the predicted results with the corresponding observed data. For some case, there were two times of wave height increase and the second increase occurred in a calm weather condition on the coast which might cause casualties. The direction of wave energy propagation was estimated from observed wave data in February, 2008. Through comparison between the direction of wave energy propagation and the meteorological data, it turns out that the second increase of waves is originated from the seas between Russia and Japan which is far from the East Sea.

Environmental and Growth Characteristics of Pimpinella brachycarpa Habitat in Mt. Jeombong, Korea (점봉산 참나물 자생지의 환경 및 생육 특성)

  • Park, Yun Mi;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.687-692
    • /
    • 2011
  • Pimpinella brachycarpa, a summer-green perennial herb, is narrowly distributed in the moist forest floors. We investigated environmental characteristics and growth patterns of Pimpinella brachycarpa depending on the microenvironment in Mt. Jeombong located in the central part of Korea. P. brachycarpa populations were located at an altitude of 978~1016 m and the average atmospheric humidity hovered at 80 percent. Also, it was found that the soil moisture content was remarkably high, 26.7%, in the populations; organic matter 11.1~11.7%; the nitrate nitrogen 0.60%; available phosphorus 19.5~39.0 ppm; CEC $20.8{\sim}21.3cmolckg^{-1}$; soil pH 4.7~4.8 respectively. In case of growth pattern, the shoot length of individuals under the improved light condition in the sunny forest was statistically longer than in the dense forest. Therefore, we presumed that high humidity and ample soil moisture are abiotic factors of the growth of P. brachycarpa and that the amount of light affects the relative growth rate of individuals.