• Title/Summary/Keyword: Atmospheric environmental condition

Search Result 254, Processing Time 0.028 seconds

Variation of Concentration of Air Pollutants with Air Mass Back-Trajectory Analysis in Gyeongju (기단 역궤적분석에 의한 경주시 대기오염물질의 농도 변화)

  • Kim, Kyung-Won;Bang, So-Yung;Jung, Jong-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.162-175
    • /
    • 2008
  • Gyeongju, which was the central city of the ancient civilization at Silla Kingdom, has various kinds of stone cultural properties. It is significantly important to preserve historical sources of Korea. However, recent air quality data measured in Gyeongju did not show good air quality level. In order to investigate variation of the concentration of the air pollutants with meteorological condition, an air quality monitoring and an aerosol sampling were conducted during the intensive monitoring period in Gyeongju. Impacts of the meteorological factors on the air pollutants were also analyzed based on the air mass pathway categories using HYSPLIT model and the local wind patterns using MM5 model. The prevailing air mass pathways were classified into four categories as following; category I affected by easterly marine aerosols, category II affected by northwesterly continental aerosols, category III affected by southwesterly continental aerosols, and category IV affected by northerly continental aerosols. The concentrations of the air quality standards were relatively lower during the fall intensive monitoring period. At that time, the easterly marine air mass pattern was dominated. The seasonal average mass concentration of $PM_{10,Opt}$, which optically measured at the monitoring site, was the highest value of $77.6{\pm}28.3\;{\mu}g\;m^{-3}$ during the spring intensive monitoring period but the lowest value of $20.1{\pm}5.3\;{\mu}g\;m^{-3}$ during the fall intensive monitoring period. The concentrations of $SO_2$ and CO were relatively higher when the air mass came from the northwestern continent or the northern continent. The concentrations of ${SO_4}^{2-}$ and ${NO_3}^-$ increased under the northwesterly continental condition. It was estimated that the acidic aerosols were dominated in the atmosphere of Gyeongju when the air mass came from the continental regions.

Field Tracer Experiments under Severe Wether Conditions for the Validation of the Dispersion of Radioactive Materials (방사능 확산 검증을 위한 악기상 조건에서의 추적자 야외확산 실증실험)

  • Han, Moon Hee;Kim, Eun Han;Jeong, Hyo Joon;Jeong, Hae Sun;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • The suitability of the site criteria is a basic requirement for securing safety of nuclear power plants. The suitability should be confirmed through the estimation of environmental radiation effects at the exclusion area boundary under the severe weather conditions. In this study, field tracer experiments over short range of 1 km radius under severe weather conditions were conducted at flat area in Daejeon. Severe weather conditions are represented with stable atmospheric condition and low wind speed. In general, the condition is appeared at clean night time with weak wind. The analysis of the measured distribution of the released tracer gas shows two big differences between the results of the past experiments conducted under the favorable weather conditions. One is the difficulty of finding the typical distribution of the released tracer gas with peak concentration in the downwind direction. The other one is the appearance of the contour of the concentration of tracer gas at several hundred meters even though the gas released at 10 m height over the ground.

Decomposition of odor using atmospheric-pressure plasma (플라즈마를 이용한 악취물질 분해 특성)

  • Kang, Seok-Won;Lee, Jae-Sik;Lee, Kang-San;Lim, Hee-Ah;Kim, Ji-Seong;Lee, Jeong-Dae;Park, Wol-Su;Park, Young-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.708-718
    • /
    • 2020
  • Offensive odor is recognized as a social environmental problem due to its olfactory effects. Ammonia(NH3), hydrogen sulfide(H2S) and benzene(C6H6) are produced from various petrochemical plants, public sewage treatment plants, public livestock wastes, and food waste disposal facilities in large quantities. Therefore efficient decomposition of offensive odor is needed. In this study, the removal efficiency of atmospheric-pressure plasma operating at an ambient condition was investigated by evaluating the concentrations at upflow and downflow between the plasma reactor. The decomposition of offensive odor using plasma is based on the mechanism of photochemical oxidation of offensive odor using free radical and ozone(O3) generated when discharging plasma, which enables the decomposition of offensive odor at ordinary temperature and has the advantage of no secondary pollutants. As a result, all three odor substances were completely decontaminated within 1 minute as soon as discharging the plasma up to 500 W. This result confirms that high concentration odors or mixed odor materials can be reduced using atmospheric-pressure plasma.

The Effects of Elevated Atmoshpheric CO2 on Chemical Weathering of Forest Soils (대기 중 이산화탄소의 증가가 산림 토양의 화학적 풍화작용에 미치는 영향)

  • Oh, Neung-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.169-180
    • /
    • 2014
  • Chemical weathering of forest soils can reduce atmospheric $CO_2$ concentration over geologic time scales, providing many essential elements for life. Although many studies have been conducted on the effects of elevated atmospheric $CO_2$ on forest carbon storage using open top chambers and FACE (Free air $CO_2$ enrichment) facilities since the 1990s, studies on chemical weathering of forest soils under elevated $CO_2$ are relatively rare. Here I review on how elevated atmospheric $CO_2$ can affect the chemical weathering of forest soils and suggest directions on future research. Despite the recent advances in chemical weathering of forest soils under elevated atmospheric $CO_2$, it is still not clear how the large volume of forest soils would react under the condition. Future studies on weathering of forest soils covering large areas from the tropics to the polar regions with carefully monitored pre-treatment data would provide key information on how soils, the Earth's life sustaining engine, change under climate change.

Design of Fine Dust Monitoring System based on the Internet of Things (사물인터넷 기반 미세먼지 모니터링 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.14-26
    • /
    • 2022
  • Recently, according to the severity of air pollution, interest in air pollution is increasing. The IoT based fine dust monitoring system proposed in this paper allows the measurement and monitoring of fine dust, volatile organic compounds, carbon dioxide, etc., which are the biggest causes affecting the human body among air environmental pollution. The proposed system consisted of a device that measures atmospheric environment information, a server system for storing and analyzing measured information, an integrated monitoring management system for administrators and smart phone applications for users to enable visualization analysis of atmospheric environment information in real time. In addition, the effectiveness of the proposed fine dust monitoring system based on the Internet of Things was verified by using the response speed of the system, the transmission speed of the sensor data, and the measurement error of the sensor. The fine dust monitoring system based on the Internet of Things proposed in this paper is expected to increase user convenience and efficiency of the system by visualizing the air pollution condition after measuring the air environment information with portable fine dust measuring device.

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Characteristics of Snow-cell Formation Processes over the Southern Part of Yellow Sea on 4 February 2004 using the KEOP Intensive Observation Data (KEOP 집중관측자료를 활용한 2004년 2월 4일 황해 남부해상의 강설세포 형성과정 특성 분석)

  • Kim, Baek-Jo;Cho, Chun-Ho;Ryu, Chan-Su;Chung, Hyo-Sang
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1401-1409
    • /
    • 2007
  • The formation mechanism of the snow cells of the Yellow Sea associated with snowfall over the southwestern part of Korea on 4 February, 2004 has been investigated using special upper-air sounding and radar data obtained for the KEOP(Korea Enhanced Observing Period) Intensive Observing Period(IOP). Results show that the types of snow cells for the selected period are classified into L(Longitudinal)-mode, Low-level convergence, and T(Transverse)-mode with their evolution from L-mode to T-mode. In particular, the existence of low-level warm and humid layer associated with temporally southwesterly inflow for about 4 hours provides a favorable condition in forming the T-mode snow cells. The vertical depth of the T-mode snow cells is deeper than that of L-mode ones due to the southeastward penetration of cold and dry air into relatively warm and humid air. In addition, it is found that wind shear vector between 1000 hPa and 600 hPa is one of the factors which control the orientation of snow cells in formation embedded into the snowbands for the both modes.

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System (코로나/촉매 일체형 시스템의 탈질특성에 관한 연구)

  • Chang, Hong-Ki;Choi, Chang-Sik;Shin, Jung-Uk;Ji, Young-Yeon;Hong, Min-Sun;Chung, Yoon-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.

Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data (KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석)

  • Jang, Min;You, Cheol-Hwan;Jee, Joon-Bum;Park, Sung-Hwa;Kim, Sang-il;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.