• Title/Summary/Keyword: Atmospheric dispersion factors

Search Result 32, Processing Time 0.022 seconds

Dose analysis of nearby residents and workers due to the emission accident of gaseous radioactive material at the spent resin mixture treatment facility

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4543-4553
    • /
    • 2023
  • The dose from a possible accident at a microwave-based spent resin mixture treatment facility that was to be installed and operated at the Wolsong nuclear power plant was analyzed to evaluate the radiological safety prior to its installation and operation. The dose to which workers and nearby residents are likely to be exposed was calculated based on the atmospheric dispersion and deposition factors using the XOQDOQ code. The highest atmospheric dispersion factors were 1.349E-05 s/m3 (workers) and 1.534E-06 s/m3 (residents). The highest doses due to emissions from the mock-up tank before operation were 1.91E-06 mSv (workers) and 1.78E-07 mSv (residents). Even after 3 h of operation, emissions from the mock-up tank had the greatest impact ranging from 4.63E-08 to 1.24E-06 mSv (workers) and 2.74E-10 to 1.16E-07 mSv (residents), respectively. The doses were 7.09E-09-4.55E-07 mSv and 4.18E-11-4.25E-08 mSv at 4-5 h of operation, and the maximum doses after operation reached 5.69E-07 mSv and 5.31E-08 mSv for the workers and residents, respectively. Even at the exclusion area boundary (EAB), 4.76E-08-9.51E-07 mSv (annual dose:9.52E-05–1.90E-03 mSv/y) was below the dose limit of the EAB, and the safety of the facility installation inside the NPP was confirmed.

Influence of Calm Conditions on the Atmospheric Dispersion of Radioactive Effluents at KAERI Site (한국원자력연구소 부지에서 방사성물질의 대기확산에 대한 정온상태의 영향)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Choi, Young-Gil;Han, Moon-Hee;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.103-107
    • /
    • 1998
  • The influence of calm conditions on the atmospheric dispersion analyses at KAERI site, which is located at a complex inland basin, was investigated. The U. S. NRC's computer programs XOQDOQ and PAVAN were used to estimate dispersion factors for routine and postulated accidental releases from nuclear facilities, respectively. The joint frequency distribution was obtained from the annual meteorological data measured in 1997 and used as input data of the computer programs. When the definition of calm is changed from 0.5 m $sec^{-1}$ to 0.21 m $sec^{-1}$, the maximum sector dispersion factor becomes 1.62 and 2.16 times higher for routine and postulated accidental releases, respectively.

  • PDF

Influence of Statistical Compilation of Meteorological Data on Short-Term Atmospheric Dispersion Factors in a Hypothetical Accidental Release of Nuclear Power Plants (기상자료의 통계처리방법이 원자력발전소의 가상 사고시 단기 대기확산인자에 미치는 영향)

  • Hwang, Won-Tae;Kim, Eun-Han;Jeong, Hae-Sun;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.116-122
    • /
    • 2012
  • A short-term atmospheric dispersion factor (${\chi}/Q$) is an essential element for radiological dose assessment following a hypothetical accidental releases of light-water nuclear power plants. The U. S. NRC developed PAVAN program to comply with the U. S. NRC's Regulatory Guide 1.145. Meteorological data is an essential element for atmospheric dispersion, and PAVAN uses a joint frequency distribution data, which represents the occurrence probability of wind speed and wind direction for atmospheric stability. Using the meteorological data measured at Kori and Wolsung sites for the last 5 years (from 2006 to 2010), a variety of joint frequency distribution data were prepared to evaluate ${\chi}/Q$ values with different wind speed classifications (U. S. NRC's recommendation and even distribution of occurrence probability) and periods of meteorological data to be analyzed (1 year, 2 year, 3 year, 4 year, 5 year). As a result, it was found that the influence of the wind speed classification on ${\chi}/Q$ values is little, while the influence of the periods of meteorological data to be analyzed is relatively significant, representing more than 1.5 times in the ratio of maximum to minimum values.

Numerical Simulation for the Field Tracer Experiment over the Kori Nuclear Power Plant (고리 원전주변에서 야외 확산실험 모사)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • Three-dimensional wind field and atmospheric dispersion models have been developed for estimating the concentration distributions of radioactive materials released into atmosphere. The field tracer experiment near the Kori nuclear power plant located over complex terrain was carried out for validating the atmospheric dispersion model. The wind fields were one of the most important factors for calculating the concentration. Therefore several numerical simulations using the measured wind data were performed to get more accurate concentration distributions compared with the analyzed values of the tracer gas. The calculated concentration distributions agreed well in the case of the usage of the more measured wind data in wind field model.

Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia (동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구)

  • Kim, Yoon-Shin;Lee, Cheol-Min;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol;Iida, Takao
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.

A Study on the Relationship of Air Pollution and Meteorological Factors : Focusing at Kwanghwamun in Seoul (대기오염농도와 기상인자의 관련성 연구: 서울 광화문지점을 중심으로)

  • 신찬기;한진석;김윤신
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.213-220
    • /
    • 1992
  • Simple correlation analysis, factor analysis, and multi-variate analysis have been performed to analyze the relationship between air pollution and meteorological factors for air pollution and meteorological data measured at Kwanghwamun in Seoul during the period of one year(January 1990 $\sim$ December 1990). As a result of simple correlation and factor analysis, $SO_2$, TSP and CO concentrations have shown high negative correlation with temperature and among these indicating that these are related with pollutant emission trend based upon heating fuel usage. Ozone has a good corrleation with solar radiation and relative humidity to have a closed relation with $O_3$ generation reaction mechanism. The result of multi-variate correlation analysis shows that the concentration of $SO_2$ and CO are adequate for correlation model with ambient temperature and wind speed and $O_3$ concentrations are adequate for that with solar radiation and wind speed. $SO_2$ and CO levels are considered to be affected first of all by heating fuel usage as a emssion source and wind speed as a dispersion effect. The $SO_2$ concentration in the condition that the temperature fall below zero is explained by multilicative model with wind speed, only one variable.

  • PDF

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2011
  • Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Field Experiment for Developing an Atmospheric Diffusion Model of a Livestock Odor (축산 악취의 확산 모델 개발을 위한 현장 실험)

  • Hong, S.W.;Lee, I.B.;Hwang, H.S.;Seo, I.H.;Kwon, H.J.;Bitog, J.P.;Yoo, J.I.;Kwon, K.S.;Ha, T.H.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.77-88
    • /
    • 2008
  • Odor is one of the major nuisances in the environment. In most countries, odor annoyance from livestock production is an increasing problem in community. In order to reduce the odor inconvenience and establish a good relation between livestock industries and the surrounding communities, many studies, such as diffusion simulations and field experiments, on the odor dispersion and its reduction have been investigated. These studies need to accompany the aerodynamic approach, as a main mechanism of diffusion phenomenon, and computational fluid dynamics(CFD) can be effectively used to study this kind of research. CFD considers both various wind conditions as well as topographical conditions to study aerodynamic phenomenon. Therefore the ultimate objective of the study was to develop an aerodynamic model to predict qualitatively and quantitatively odor diffusion from livestock. In this study, as the first step of this study, various phenomena and factors of odor diffusion from livestock houses were investigated through field experiments in 2007. Later, those data will be also used to verify the CFD accuracy as well as to develop 3-dimensional CFD model.